Image Super-Resolution for Anime-Style Art
fork from : https://github.com/nagadomi/waifu2x.git

nagadomi 42bd89151e Add -gpu option in train.lua 9 năm trước cách đây
appendix f399b34799 Added support for ru in nginx.conf 9 năm trước cách đây
assets dcfb0d170d Improve web interface 9 năm trước cách đây
cache 1273b3609e first commit 10 năm trước cách đây
images 8dea362bed sync from internal repo 9 năm trước cách đây
lib 42bd89151e Add -gpu option in train.lua 9 năm trước cách đây
models bcbebe5f77 Update denosing models 9 năm trước cách đây
tools 7ac7923345 Don't run model2 benchmark when model2_dir is not specified 9 năm trước cách đây
.gitattributes dd64c0004d Add .gitattributes 9 năm trước cách đây
.gitignore 539941c234 Add support for url cache in web.lua 9 năm trước cách đây
LICENSE f2f5c882eb add LICENSE and NOTICE 10 năm trước cách đây
NOTICE f2f5c882eb add LICENSE and NOTICE 10 năm trước cách đây
README.md 5db37f3392 Fix README syntax 9 năm trước cách đây
convert_data.lua 4c691b4640 refactor 9 năm trước cách đây
train.lua 42bd89151e Add -gpu option in train.lua 9 năm trước cách đây
train.sh 903d945652 cleanup 9 năm trước cách đây
train_ukbench.sh 903d945652 cleanup 9 năm trước cách đây
waifu2x.lua 4a4885c856 Add -white_noise option 9 năm trước cách đây
web.lua c345f35ed0 Use Image.toString instead of Image.toBlob 9 năm trước cách đây

README.md

dev branch

This branch is work in progress.

waifu2x

Image Super-Resolution for anime-style-art using Deep Convolutional Neural Networks.

Demo-Application can be found at http://waifu2x.udp.jp/ .

Summary

Click to see the slide show.

slide

References

waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].

Public AMI

AMI ID: ami-0be01e4f
AMI NAME: waifu2x-server
Instance Type: g2.2xlarge
Region: US West (N.California)
OS: Ubuntu 14.04
User: ubuntu
Created at: 2015-08-12

Third Party Software

Third-Party

Dependencies

Hardware

  • NVIDIA GPU

Platform

lualocks packages (excludes torch7's default packages)

  • lua-csnappy
  • md5
  • uuid
  • turbo

Installation

Setting Up the Command Line Tool Environment

(on Ubuntu 14.04)

Install CUDA

See: NVIDIA CUDA Getting Started Guide for Linux

Download CUDA

sudo dpkg -i cuda-repo-ubuntu1404_7.0-28_amd64.deb
sudo apt-get update
sudo apt-get install cuda

Install Package

sudo apt-get install libsnappy-dev

Install Torch7

See: Getting started with Torch

And install luarocks packages.

luarocks install lua-csnappy
luarocks install md5
luarocks install uuid
PREFIX=$HOME/torch/install luarocks install turbo # if you need web application

Validation

Test the waifu2x command line tool.

th waifu2x.lua

Web Application

th web.lua

View at: http://localhost:8812/

Command line tools

Noise Reduction

th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png

2x Upscaling

th waifu2x.lua -m scale -i input_image.png -o output_image.png

Noise Reduction + 2x Upscaling

th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png

See also images/gen.sh.

Video Encoding

* avconv is ffmpeg on Ubuntu 14.04.

Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)

mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3

Generating a image list.

find ./frames -name "*.png" |sort > data/frame.txt

waifu2x (for example, noise reduction)

mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png

Generating a video from waifu2xed images and audio.

avconv -f image2 -r 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4

Training Your Own Model

Notes: If you have cuDNN library, you can use cudnn kernel with -backend cudnn option. And you can convert trained cudnn model to cunn model with tools/cudnn2cunn.lua.

Data Preparation

Genrating a file list.

find /path/to/image/dir -name "*.png" > data/image_list.txt

(You should use PNG! In my case, waifu2x is trained with 3000 high-resolution-noise-free-PNG images.)

Converting training data.

th convert_data.lua

Training a Noise Reduction(level1) model

mkdir models/my_model
th train.lua -model_dir models/my_model -method noise -noise_level 1 -test images/miku_noisy.png
th cleanup_model.lua -model models/my_model/noise1_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 1 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise1_best.png.

Training a Noise Reduction(level2) model

th train.lua -model_dir models/my_model -method noise -noise_level 2 -test images/miku_noisy.png
th cleanup_model.lua -model models/my_model/noise2_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 2 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise2_best.png.

Training a 2x UpScaling model

th train.lua -model_dir models/my_model -method scale -scale 2 -test images/miku_small.png
th cleanup_model.lua -model models/my_model/scale2.0x_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m scale -scale 2 -i images/miku_small.png -o output.png

You can check the performance of model with models/my_model/scale2.0x_best.png.