nagadomi 10 anni fa
commit
1273b3609e

+ 2 - 0
.gitignore

@@ -0,0 +1,2 @@
+*~
+cache/*.png

+ 78 - 0
assets/index.html

@@ -0,0 +1,78 @@
+<html>
+  <head>
+    <style type="text/css" rel="http://cdnjs.cloudflare.com/ajax/libs/normalize/3.0.3/normalize.min.css"></style>
+    <style type="text/css">
+    body {
+      margin: 1em 2em 1em 2em;
+      background: LightGray;
+      width: 640px;
+    }
+    fieldset {
+      margin-top: 1em;
+      margin-bottom: 1em;
+    }
+    .about {
+      font-size: 0.8em;
+      margin: 1em 0 1em 0;
+    }
+    .help {
+      font-size: 0.8em;
+      margin: 1em 0 1em 0;
+    }
+    </style>
+    <script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
+    <script type="text/javascript">
+    function clear_file() {
+      var new_file = $("#file").clone();
+      new_file.change(clear_url);
+      $("#file").replaceWith(new_file);
+    }
+    function clear_url() {
+      $("#url").val("")
+    }
+    $(function (){
+      $("#url").change(clear_file);
+      $("#file").change(clear_url);
+    })
+    </script>
+  </head>
+  <body>
+    <h1>waifu2x</h1>
+    <div class="header">
+      <a href="https://github.com/you">
+	<img style="position: absolute; top: 0; left: 540; border: 0;" src="https://camo.githubusercontent.com/a6677b08c955af8400f44c6298f40e7d19cc5b2d/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f677261795f3664366436642e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_gray_6d6d6d.png">
+      </a>
+      <a href="index.ja.html">ja</a>/<a href="index.html">en</a>
+    </div>
+    <div class="about">
+      Single-Image Super-Resolution for anime/fan-arts using Deep Convolutional Neural Networks.
+    </div>
+    <form action="/api" method="POST" enctype="multipart/form-data" target="_blank">
+      <fieldset>
+	<legend>Image</legend>
+	<div>
+	  URL: <input id="url" type="text" name="url" size="64"/> or
+	</div>
+	<div>
+	  FILE: <input id="file" type="file" name="file"/>
+	</div>
+	<div class="help">
+	  Limits: FileSize: 2MB, Noise Reduction: 2560x2560px, Upscaling: 1280x1280px
+	</div>
+      </fieldset>
+      <fieldset>
+	<legend>Noise Reduction (expect JPEG Artifact)</legend>
+	<label><input type="radio" name="noise" value="0"> None</label>
+	<label><input type="radio" name="noise" value="1" checked="checked"> Low</label>
+	<label><input type="radio" name="noise" value="2"> High</label>
+      </fieldset>
+      <fieldset>
+	<legend>Upscaling</legend>
+	<label><input type="radio" name="scale" value="0" checked="checked"> None</label>
+	<label><input type="radio" name="scale" value="1"> 1.6x</label>
+	<label><input type="radio" name="scale" value="2"> 2x</label>
+      </fieldset>
+      <input type="submit"/>
+    </form>
+  </body>
+</html>

+ 85 - 0
assets/index.ja.html

@@ -0,0 +1,85 @@
+<html lang="ja">
+  <head>
+    <meta charset="UTF-8">
+    <style type="text/css" rel="http://cdnjs.cloudflare.com/ajax/libs/normalize/3.0.3/normalize.min.css"></style>
+    <style type="text/css">
+    body {
+      margin: 1em 2em 1em 2em;
+      background: LightGray;
+      width: 640px;
+    }
+    fieldset {
+      margin-top: 1em;
+        margin-bottom: 1em;
+    }
+    .about {
+      font-size: 0.8em;
+      margin: 1em 0 1em 0;
+    }
+    .help {
+      font-size: 0.8em;
+      margin: 1em 0 1em 0;
+    }
+    </style>
+    <script src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
+    <script type="text/javascript">
+    function clear_file() {
+      var new_file = $("#file").clone();
+      new_file.change(clear_url);
+      $("#file").replaceWith(new_file);
+    }
+    function clear_url() {
+      $("#url").val("")
+    }
+    $(function (){
+      $("#url").change(clear_file);
+      $("#file").change(clear_url);
+    })
+    </script>
+  </head>
+  <body>
+    <h1>waifu2x</h1>
+    <div class="header">
+      <a href="https://github.com/you">
+	<img style="position: absolute; top: 0; left: 540; border: 0;" src="https://camo.githubusercontent.com/a6677b08c955af8400f44c6298f40e7d19cc5b2d/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6769746875622f726962626f6e732f666f726b6d655f72696768745f677261795f3664366436642e706e67" alt="Fork me on GitHub" data-canonical-src="https://s3.amazonaws.com/github/ribbons/forkme_right_gray_6d6d6d.png">
+      </a>
+    </div>
+    <div class="about">
+      深層畳み込みニューラルネットワークによる二次元画像のための超解像システム.
+    </div>
+    <form action="/api" method="POST" enctype="multipart/form-data" target="_blank">
+      <fieldset>
+	<legend>Image</legend>
+	<div>
+	  URL: <input id="url" type="text" name="url" size="64"/> or
+	</div>
+	<div>
+	  FILE: <input id="file" type="file" name="file"/>
+	</div>
+	<div class="help">
+	  制限: サイズ: 2MB, ノイズ除去: 2560x2560px, 拡大: 1280x1280px
+	</div>
+      </fieldset>
+      <fieldset>
+	<legend>ノイズ除去 (JPEGノイズを想定)</legend>
+	<label><input type="radio" name="noise" value="0"> なし</label>
+	<label><input type="radio" name="noise" value="1" checked="checked"> 弱</label>
+	<label><input type="radio" name="noise" value="2"> 強</label>
+      </fieldset>
+      <fieldset>
+	<legend>拡大</legend>
+	<label><input type="radio" name="scale" value="0" checked="checked"> なし</label>
+	<label><input type="radio" name="scale" value="1"> 1.6x</label>
+	<label><input type="radio" name="scale" value="2"> 2x</label>
+      </fieldset>
+      <input type="submit" value="実行"/>
+    </form>
+    <div class="help">
+      <ul>
+	<li>なし/なしで入力画像を変換せずに出力する。ブラウザのタブで変換結果を比較したい人用。</li>
+	<li>JPEG画像であれば劣化がないように見えてもノイズ除去弱を推奨。</li>
+	<li>マンガスキャンの拡大はスクリーントーンが謎の模様に再構成されるため非対応。</li>
+      </ul>
+    </div>
+  </body>
+</html>

+ 0 - 0
cache/.gitkeep


+ 69 - 0
cleanup_model.lua

@@ -0,0 +1,69 @@
+require 'cunn'
+require 'cudnn'
+require './lib/LeakyReLU'
+
+torch.setdefaulttensortype("torch.FloatTensor")
+
+-- ref: https://github.com/torch/nn/issues/112#issuecomment-64427049
+local function zeroDataSize(data)
+   if type(data) == 'table' then
+      for i = 1, #data do
+	 data[i] = zeroDataSize(data[i])
+      end
+   elseif type(data) == 'userdata' then
+      data = torch.Tensor():typeAs(data)
+   end
+   return data
+end
+
+-- Resize the output, gradInput, etc temporary tensors to zero (so that the
+-- on disk size is smaller)
+local function cleanupModel(node)
+   if node.output ~= nil then
+      node.output = zeroDataSize(node.output)
+   end
+   if node.gradInput ~= nil then
+      node.gradInput = zeroDataSize(node.gradInput)
+   end
+   if node.finput ~= nil then
+      node.finput = zeroDataSize(node.finput)
+   end
+   if tostring(node) == "nn.LeakyReLU" then
+      if node.negative ~= nil then
+	 node.negative = zeroDataSize(node.negative)
+      end
+   end
+   if tostring(node) == "nn.Dropout" then
+      if node.noise ~= nil then
+	 node.noise = zeroDataSize(node.noise)
+      end
+   end
+   -- Recurse on nodes with 'modules'
+   if (node.modules ~= nil) then
+     if (type(node.modules) == 'table') then
+	for i = 1, #node.modules do
+	   local child = node.modules[i]
+	   cleanupModel(child)
+	end
+     end
+   end
+   
+   collectgarbage()
+end
+
+local cmd = torch.CmdLine()
+cmd:text()
+cmd:text("cleanup model")
+cmd:text("Options:")
+cmd:option("-model", "./model.t7", 'path of model file')
+cmd:option("-iformat", "binary", 'input format')
+cmd:option("-oformat", "binary", 'output format')
+
+local opt = cmd:parse(arg)
+local model = torch.load(opt.model, opt.iformat)
+if model then
+   cleanupModel(model)
+   torch.save(opt.model, model, opt.oformat)
+else
+   error("model not found")
+end

+ 30 - 0
lib/LeakyReLU.lua

@@ -0,0 +1,30 @@
+if nn.LeakyReLU then
+   return
+end
+local LeakyReLU, parent = torch.class('nn.LeakyReLU','nn.Module')
+ 
+function LeakyReLU:__init(negative_scale)
+   parent.__init(self)
+   self.negative_scale = negative_scale or 0.333
+   self.negative = torch.Tensor()
+end
+ 
+function LeakyReLU:updateOutput(input)
+   self.output:resizeAs(input):copy(input):abs():add(input):div(2)
+   self.negative:resizeAs(input):copy(input):abs():add(-1.0, input):mul(-0.5*self.negative_scale)
+   self.output:add(self.negative)
+   
+   return self.output
+end
+ 
+function LeakyReLU:updateGradInput(input, gradOutput)
+   self.gradInput:resizeAs(gradOutput)
+   -- filter positive
+   self.negative:sign():add(1)
+   torch.cmul(self.gradInput, gradOutput, self.negative)
+   -- filter negative
+   self.negative:add(-1):mul(-1 * self.negative_scale):cmul(gradOutput)
+   self.gradInput:add(self.negative)
+   
+   return self.gradInput
+end

+ 73 - 0
lib/image_loader.lua

@@ -0,0 +1,73 @@
+local gm = require 'graphicsmagick'
+require 'pl'
+
+local image_loader = {}
+
+function image_loader.decode_float(blob)
+   local im = image_loader.decode_byte(blob)
+   if im then
+      im = im:float():div(255)
+   end
+   return im
+end
+function image_loader.encode_png(tensor)
+   local im = gm.Image(tensor, "RGB", "DHW")
+   im:format("png")
+   return im:toBlob()
+end
+function image_loader.decode_byte(blob)
+   local load_image = function()
+      local im = gm.Image()
+      im:fromBlob(blob, #blob)
+      -- FIXME: How to detect that a image has an alpha channel?
+      if blob:sub(1, 4) == "\x89PNG" or blob:sub(1, 3) == "GIF" then
+	 -- merge alpha channel
+	 im = im:toTensor('float', 'RGBA', 'DHW')
+	 local w2 = im[4]
+	 local w1 = im[4] * -1 + 1
+	 local new_im = torch.FloatTensor(3, im:size(2), im:size(3))
+	 -- apply the white background
+	 new_im[1]:copy(im[1]):cmul(w2):add(w1)
+	 new_im[2]:copy(im[2]):cmul(w2):add(w1)
+	 new_im[3]:copy(im[3]):cmul(w2):add(w1)
+	 im = new_im:mul(255):byte()
+      else
+	 im = im:toTensor('byte', 'RGB', 'DHW')
+      end
+      return im
+   end
+   local state, ret = pcall(load_image)
+   if state then
+      return ret
+   else
+      return nil
+   end
+end
+function image_loader.load_float(file)
+   local fp = io.open(file, "rb")
+   local buff = fp:read("*a")
+   fp:close()
+   return image_loader.decode_float(buff)
+end
+function image_loader.load_byte(file)
+   local fp = io.open(file, "rb")
+   local buff = fp:read("*a")
+   fp:close()
+   return image_loader.decode_byte(buff)
+end
+local function test()
+   require 'image'
+   local img
+   img = image_loader.load_float("./a.jpg")
+   if img then
+      print(img:min())
+      print(img:max())
+      image.display(img)
+   end
+   img = image_loader.load_float("./b.png")
+   if img then
+      image.display(img)
+   end
+end
+--test()
+return image_loader

+ 35 - 0
lib/iproc.lua

@@ -0,0 +1,35 @@
+local gm = require 'graphicsmagick'
+local image = require 'image'
+local iproc = {}
+
+function iproc.sample(src, width, height)
+   local t = "float"
+   if src:type() == "torch.ByteTensor" then
+      t = "byte"
+   end
+   local im = gm.Image(src, "RGB", "DHW")
+   im:sample(math.ceil(width), math.ceil(height))
+   return im:toTensor(t, "RGB", "DHW")
+end
+function iproc.scale(src, width, height, filter)
+   local t = "float"
+   if src:type() == "torch.ByteTensor" then
+      t = "byte"
+   end
+   filter = filter or "Box"
+   local im = gm.Image(src, "RGB", "DHW")
+   im:size(math.ceil(width), math.ceil(height), filter)
+   return im:toTensor(t, "RGB", "DHW")
+end
+function iproc.padding(img, w1, w2, h1, h2)
+   local dst_height = img:size(2) + h1 + h2
+   local dst_width = img:size(3) + w1 + w2
+   local flow = torch.Tensor(2, dst_height, dst_width)
+   flow[1] = torch.ger(torch.linspace(0, dst_height -1, dst_height), torch.ones(dst_width))
+   flow[2] = torch.ger(torch.ones(dst_height), torch.linspace(0, dst_width - 1, dst_width))
+   flow[1]:add(-h1)
+   flow[2]:add(-w1)
+   return image.warp(img, flow, "simple", false, "clamp")
+end
+
+return iproc

+ 63 - 0
lib/minibatch_sgd.lua

@@ -0,0 +1,63 @@
+require 'optim'
+require 'cutorch'
+require 'xlua'
+
+local function minibatch_sgd(model, criterion,
+			     train_x,
+			     config, transformer,
+			     input_size, target_size)
+   local parameters, gradParameters = model:getParameters()
+   config = config or {}
+   local sum_loss = 0
+   local count_loss = 0
+   local batch_size = config.xBatchSize or 32
+   local shuffle = torch.randperm(#train_x)
+   local c = 1
+   local inputs = torch.Tensor(batch_size,
+			       input_size[1], input_size[2], input_size[3]):cuda()
+   local targets = torch.Tensor(batch_size,
+				target_size[1] * target_size[2] * target_size[3]):cuda()
+   local inputs_tmp = torch.Tensor(batch_size,
+			       input_size[1], input_size[2], input_size[3])
+   local targets_tmp = torch.Tensor(batch_size,
+				    target_size[1] * target_size[2] * target_size[3])
+   
+   for t = 1, #train_x, batch_size do
+      if t + batch_size > #train_x then
+	 break
+      end
+      xlua.progress(t, #train_x)
+      for i = 1, batch_size do
+	 local x, y = transformer(train_x[shuffle[t + i - 1]])
+         inputs_tmp[i]:copy(x)
+	 targets_tmp[i]:copy(y)
+      end
+      inputs:copy(inputs_tmp)
+      targets:copy(targets_tmp)
+      
+      local feval = function(x)
+	 if x ~= parameters then
+	    parameters:copy(x)
+	 end
+	 gradParameters:zero()
+	 local output = model:forward(inputs)
+	 local f = criterion:forward(output, targets)
+	 sum_loss = sum_loss + f
+	 count_loss = count_loss + 1
+	 model:backward(inputs, criterion:backward(output, targets))
+	 return f, gradParameters
+      end
+      -- must use Adam!!
+      optim.adam(feval, parameters, config)
+      
+      c = c + 1
+      if c % 10 == 0 then
+	 collectgarbage()
+      end
+   end
+   xlua.progress(#train_x, #train_x)
+   
+   return { mse = sum_loss / count_loss}
+end
+
+return minibatch_sgd

+ 174 - 0
lib/pairwise_transform.lua

@@ -0,0 +1,174 @@
+require 'image'
+local gm = require 'graphicsmagick'
+local iproc = require './iproc'
+local reconstract = require './reconstract'
+local pairwise_transform = {}
+
+function pairwise_transform.scale(src, scale, size, offset, options)
+   options = options or {}
+   local yi = torch.radom(0, src:size(2) - size - 1)
+   local xi = torch.random(0, src:size(3) - size - 1)
+   local down_scale = 1.0 / scale
+   local y = image.crop(src, xi, yi, xi + size, yi + size)
+   local flip = torch.random(1, 4)
+   local nega = torch.random(0, 1)
+   local filters = {
+      "Box",        -- 0.012756949974688
+      "Blackman",   -- 0.013191924552285
+      --"Cartom",     -- 0.013753536746706
+      --"Hanning",    -- 0.013761314529647
+      --"Hermite",    -- 0.013850225205266
+      --"SincFast",   -- 0.014095824314306
+      --"Jinc",       -- 0.014244299255442
+   }
+   local downscale_filter = filters[torch.random(1, #filters)]
+   
+   if r == 1 then
+      y = image.hflip(y)
+   elseif r == 2 then
+      y = image.vflip(y)
+   elseif r == 3 then
+      y = image.hflip(image.vflip(y))
+   elseif r == 4 then
+      -- none
+   end
+   if options.color_augment then
+      y = y:float():div(255)
+      local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
+      for i = 1, 3 do
+	 y[i]:mul(color_scale[i])
+      end
+      y[torch.lt(y, 0)] = 0
+      y[torch.gt(y, 1.0)] = 1.0
+      y = y:mul(255):byte()
+   end
+   local x = iproc.scale(y, y:size(3) * down_scale, y:size(2) * down_scale, downscale_filter)
+   if options.noise and (options.noise_ratio or 0.5) > torch.uniform() then
+      -- add noise
+      local quality = {torch.random(70, 90)}
+      for i = 1, #quality do
+	 x = gm.Image(x, "RGB", "DHW")
+	 x:format("jpeg")
+	 local blob, len = x:toBlob(quality[i])
+	 x:fromBlob(blob, len)
+	    x = x:toTensor("byte", "RGB", "DHW")
+      end
+   end
+   if options.denoise_model and (options.denoise_ratio or 0.5) > torch.uniform() then
+      x = reconstract(options.denoise_model, x:float():div(255), offset):mul(255):byte()
+   end
+   x = iproc.scale(x, y:size(3), y:size(2))
+   y = y:float():div(255)
+   x = x:float():div(255)
+   y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
+   x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
+   
+   return x, image.crop(y, offset, offset, size - offset, size - offset)
+end
+function pairwise_transform.jpeg_(src, quality, size, offset, color_augment)
+   if color_augment == nil then color_augment = true end
+   local yi = torch.random(0, src:size(2) - size - 1)
+   local xi = torch.random(0, src:size(3) - size - 1)
+   local y = src
+   local x
+   local flip = torch.random(1, 4)
+
+   if color_augment then
+      local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
+      y = y:float():div(255)
+      for i = 1, 3 do
+	 y[i]:mul(color_scale[i])
+      end
+      y[torch.lt(y, 0)] = 0
+      y[torch.gt(y, 1.0)] = 1.0
+      y = y:mul(255):byte()
+   end
+   x = y
+   for i = 1, #quality do
+      x = gm.Image(x, "RGB", "DHW")
+      x:format("jpeg")
+      local blob, len = x:toBlob(quality[i])
+      x:fromBlob(blob, len)
+      x = x:toTensor("byte", "RGB", "DHW")
+   end
+   
+   y = image.crop(y, xi, yi, xi + size, yi + size)
+   x = image.crop(x, xi, yi, xi + size, yi + size)
+   x = x:float():div(255)
+   y = y:float():div(255)
+   
+   if flip == 1 then
+      y = image.hflip(y)
+      x = image.hflip(x)
+   elseif flip == 2 then
+      y = image.vflip(y)
+      x = image.vflip(x)
+   elseif flip == 3 then
+      y = image.hflip(image.vflip(y))
+      x = image.hflip(image.vflip(x))
+   elseif flip == 4 then
+      -- none
+   end
+   y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
+   x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
+
+   return x, image.crop(y, offset, offset, size - offset, size - offset)
+end
+function pairwise_transform.jpeg(src, level, size, offset, color_augment)
+   if level == 1 then
+      return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
+				      size, offset,
+				      color_augment)
+   elseif level == 2 then
+      local r = torch.uniform()
+      if r > 0.6 then
+	 return pairwise_transform.jpeg_(src, {torch.random(27, 80)},
+					 size, offset,
+					 color_augment)
+      elseif r > 0.3 then
+	 local quality1 = torch.random(32, 40)
+	 local quality2 = quality1 - 5
+	 return pairwise_transform.jpeg_(src, {quality1, quality2},
+					 size, offset,
+					 color_augment)
+      else
+	 local quality1 = torch.random(47, 70)
+	 return pairwise_transform.jpeg_(src, {quality1, quality1 - 10, quality1 - 20},
+					 size, offset,
+					 color_augment)
+      end
+   else
+      error("unknown noise level: " .. level)
+   end
+end
+
+local function test_jpeg()
+   local loader = require 'image_loader'
+   local src = loader.load_byte("a.jpg")
+
+   for i = 2, 9 do
+      local y, x = pairwise_transform.jpeg_(src, {i * 10}, 128, 0, false)
+      image.display({image = y, legend = "y:" .. (i * 10), max=1,min=0})
+      image.display({image = x, legend = "x:" .. (i * 10),max=1,min=0})
+      --print(x:mean(), y:mean())
+   end
+end
+local function test_scale()
+   require 'nn'
+   require 'cudnn'
+   require './LeakyReLU'
+   
+   local loader = require 'image_loader'
+   local src = loader.load_byte("e.jpg")
+
+   for i = 1, 9 do
+      local y, x = pairwise_transform.scale(src, 2.0, "Box", 128, 7, {noise = true, denoise_model = torch.load("models/noise1_model.t7")})
+      image.display({image = y, legend = "y:" .. (i * 10)})
+      image.display({image = x, legend = "x:" .. (i * 10)})
+      --print(x:mean(), y:mean())
+   end
+end
+--test_jpeg()
+--test_scale()
+
+return pairwise_transform

+ 58 - 0
lib/reconstract.lua

@@ -0,0 +1,58 @@
+require 'image'
+local iproc = require './iproc'
+
+local function reconstract_layer(model, x, block_size, offset)
+   if x:dim() == 2 then
+      x = x:reshape(1, x:size(1), x:size(2))
+   end
+   local new_x = torch.Tensor():resizeAs(x):zero()
+   local output_size = block_size - offset * 2
+   local input = torch.CudaTensor(1, 1, block_size, block_size)
+   
+   for i = 1, x:size(2), output_size do
+      for j = 1, x:size(3), output_size do
+	 if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then
+	    local index = {{},
+			   {i, i + block_size - 1},
+			   {j, j + block_size - 1}}
+	    input:copy(x[index])
+	    local output = model:forward(input):float():view(1, output_size, output_size)
+	    local output_index = {{},
+				  {i + offset, offset + i + output_size - 1},
+				  {offset + j, offset + j + output_size - 1}}
+	    new_x[output_index]:copy(output)
+	 end
+      end
+   end
+   return new_x
+end
+local function reconstract(model, x, offset, block_size)
+   block_size = block_size or 128
+   local output_size = block_size - offset * 2
+   local h_blocks = math.floor(x:size(2) / output_size) +
+      ((x:size(2) % output_size == 0 and 0) or 1)
+   local w_blocks = math.floor(x:size(3) / output_size) +
+      ((x:size(3) % output_size == 0 and 0) or 1)
+   
+   local h = offset + h_blocks * output_size + offset
+   local w = offset + w_blocks * output_size + offset
+   local pad_h1 = offset
+   local pad_w1 = offset
+   local pad_h2 = (h - offset) - x:size(2)
+   local pad_w2 = (w - offset) - x:size(3)
+   local yuv = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))
+   local y = reconstract_layer(model, yuv[1], block_size, offset)
+   y[torch.lt(y, 0)] = 0
+   y[torch.gt(y, 1)] = 1
+   yuv[1]:copy(y)
+   local output = image.yuv2rgb(image.crop(yuv,
+					   pad_w1, pad_h1,
+					   yuv:size(3) - pad_w2, yuv:size(2) - pad_h2))
+   output[torch.lt(output, 0)] = 0
+   output[torch.gt(output, 1)] = 1
+   collectgarbage()
+   
+   return output
+end
+
+return reconstract

+ 58 - 0
lib/settings.lua

@@ -0,0 +1,58 @@
+require 'torch'
+require 'cutorch'
+require 'xlua'
+require 'pl'
+
+-- global settings
+
+if package.preload.settings then
+   return package.preload.settings
+end
+
+-- default tensor type
+torch.setdefaulttensortype('torch.FloatTensor')
+
+local settings = {}
+
+local cmd = torch.CmdLine()
+cmd:text()
+cmd:text("waifu2x")
+cmd:text("Options:")
+cmd:option("-seed", 11, 'fixed input seed')
+cmd:option("-data_dir", "./data", 'data directory')
+cmd:option("-test", "images/miku_small.png", 'test image file')
+cmd:option("-model_dir", "./models", 'model directory')
+cmd:option("-method", "scale", '(noise|scale)')
+cmd:option("-noise_level", 1, '(1|2)')
+cmd:option("-scale", 2.0, 'scale')
+cmd:option("-learning_rate", 0.00025, 'learning rate for adam')
+cmd:option("-crop_size", 128, 'crop size')
+cmd:option("-batch_size", 2, 'mini batch size')
+cmd:option("-epoch", 200, 'epoch')
+cmd:option("-core", 2, 'cpu core')
+
+local opt = cmd:parse(arg)
+for k, v in pairs(opt) do
+   settings[k] = v
+end
+if settings.method == "noise" then
+   settings.model_file = string.format("%s/noise%d_model.t7", settings.model_dir, settings.noise_level)
+elseif settings.method == "scale" then
+   settings.model_file = string.format("%s/scale%.1fx_model.t7", settings.model_dir, settings.scale)
+   settings.denoise_model_file = string.format("%s/noise%d_model.t7", settings.model_dir, settings.noise_level)
+else
+   error("unknown method: " .. settings.method)
+end
+if not (settings.scale == math.floor(settings.scale) and settings.scale % 2 == 0) then
+   error("scale must be mod-2")
+end
+torch.setnumthreads(settings.core)
+
+settings.images = string.format("%s/images.t7", settings.data_dir)
+settings.image_list = string.format("%s/image_list.txt", settings.data_dir)
+
+settings.validation_ratio = 01
+settings.validation_crops = 40
+settings.block_offset = 7 -- see srcnn.lua
+
+return settings

+ 32 - 0
lib/srcnn.lua

@@ -0,0 +1,32 @@
+require 'cunn'
+require 'cudnn'
+require './LeakyReLU'
+
+function cudnn.SpatialConvolution:reset(stdv)
+   stdv = math.sqrt(2 / ( self.kW * self.kH * self.nOutputPlane))
+   self.weight:normal(0, stdv)
+   self.bias:fill(0)
+end
+local function create_model()
+   local model = nn.Sequential() 
+   
+   model:add(cudnn.SpatialConvolution(1, 32, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.LeakyReLU(0.1))   
+   model:add(cudnn.SpatialConvolution(32, 32, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.LeakyReLU(0.1))
+   model:add(cudnn.SpatialConvolution(32, 64, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.LeakyReLU(0.1))
+   model:add(cudnn.SpatialConvolution(64, 64, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.LeakyReLU(0.1))
+   model:add(cudnn.SpatialConvolution(64, 128, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.LeakyReLU(0.1))
+   model:add(cudnn.SpatialConvolution(128, 128, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.LeakyReLU(0.1))
+   model:add(cudnn.SpatialConvolution(128, 1, 3, 3, 1, 1, 0, 0):fastest())
+   model:add(nn.View(-1):setNumInputDims(3))
+--model:cuda()
+--print(model:forward(torch.Tensor(32, 1, 92, 92):uniform():cuda()):size())
+   
+   return model, 7
+end
+return create_model

File diff suppressed because it is too large
+ 70 - 0
models/noise1_model.t7


File diff suppressed because it is too large
+ 70 - 0
models/noise2_model.t7


File diff suppressed because it is too large
+ 70 - 0
models/scale2.0x_model.t7


+ 143 - 0
train.lua

@@ -0,0 +1,143 @@
+require 'cutorch'
+require 'cunn'
+require 'optim'
+require 'xlua'
+require 'pl'
+
+local settings = require './lib/settings'
+local minibatch_sgd = require './lib/minibatch_sgd'
+local iproc = require './lib/iproc'
+local create_model = require './lib/srcnn'
+local reconstract, reconstract_ch = require './lib/reconstract'
+local pairwise_transform = require './lib/pairwise_transform'
+local image_loader = require './lib/image_loader'
+
+local function save_test_scale(model, rgb, file)
+   local input = iproc.scale(rgb,
+			     rgb:size(3) * settings.scale,
+			     rgb:size(2) * settings.scale)
+   local up = reconstract(model, input, settings.block_offset)
+   
+   image.save(file, up)
+end
+local function save_test_jpeg(model, rgb, file)
+   local im, count = reconstract(model, rgb, settings.block_offset)
+   image.save(file, im)
+end
+local function split_data(x, test_size)
+   local index = torch.randperm(#x)
+   local train_size = #x - test_size
+   local train_x = {}
+   local valid_x = {}
+   for i = 1, train_size do
+      train_x[i] = x[index[i]]
+   end
+   for i = 1, test_size do
+      valid_x[i] = x[index[train_size + i]]
+   end
+   return train_x, valid_x
+end
+local function make_validation_set(x, transformer, n)
+   n = n or 4
+   local data = {}
+   for i = 1, #x do
+      for k = 1, n do
+	 local x, y = transformer(x[i], true)
+	 table.insert(data, {x = x:reshape(1, x:size(1), x:size(2), x:size(3)),
+			     y = y:reshape(1, y:size(1), y:size(2), y:size(3))})
+      end
+      xlua.progress(i, #x)
+      collectgarbage()
+   end
+   return data
+end
+local function validate(model, criterion, data)
+   local loss = 0
+   for i = 1, #data do
+      local z = model:forward(data[i].x:cuda())
+      loss = loss + criterion:forward(z, data[i].y:cuda())
+      xlua.progress(i, #data)
+      if i % 10 == 0 then
+	 collectgarbage()
+      end
+   end
+   return loss / #data
+end
+
+local function train()
+   local model, offset = create_model()
+   assert(offset == settings.block_offset)
+   local criterion = nn.MSECriterion():cuda()
+   local x = torch.load(settings.images)
+   local train_x, valid_x = split_data(x,
+				       math.floor(settings.validation_ratio * #x),
+				       settings.validation_crops)
+   local test = image_loader.load_float(settings.test)
+   local adam_config = {
+      learningRate = settings.learning_rate,
+      xBatchSize = settings.batch_size,
+   }
+   local denoise_model = nil
+   if settings.method == "scale" and path.exists(settings.denoise_model_file) then
+      denoise_model = torch.load(settings.denoise_model_file)
+   end
+   local transformer = function(x, is_validation)
+      if is_validation == nil then is_validation = false end
+      if settings.method == "scale" then
+	 return pairwise_transform.scale(x,
+					 settings.scale,
+					 settings.crop_size,
+					 offset,
+					 {color_augment = not is_validation,
+					  noise = false,
+					  denoise_model = nil
+					 })
+      elseif settings.method == "noise" then
+	 return pairwise_transform.jpeg(x, settings.noise_level,
+					settings.crop_size, offset,
+					   not is_validation)
+      end
+   end
+   local best_score = 100000.0
+   print("# make validation-set")
+   local valid_xy = make_validation_set(valid_x, transformer, 20)
+   valid_x = nil
+   
+   collectgarbage()
+   model:cuda()
+   print("load .. " .. #train_x)
+   for epoch = 1, settings.epoch do
+      model:training()
+      print("# " .. epoch)
+      print(minibatch_sgd(model, criterion, train_x, adam_config,
+			  transformer,
+			  {1, settings.crop_size, settings.crop_size},
+			  {1, settings.crop_size - offset * 2, settings.crop_size - offset * 2}
+			 ))
+      if epoch % 1 == 0 then
+	 collectgarbage()
+	 model:evaluate()
+	 print("# validation")
+	 local score = validate(model, criterion, valid_xy)
+	 if score < best_score then
+	    best_score = score
+	    print("* update best model")
+	    torch.save(settings.model_file, model)
+	    if settings.method == "noise" then
+	       local log = path.join(settings.model_dir,
+				     ("noise%d_best.png"):format(settings.noise_level))
+	       save_test_jpeg(model, test, log)
+	    elseif settings.method == "scale" then
+	       local log = path.join(settings.model_dir,
+				     ("scale%.1f_best.png"):format(settings.scale))
+	       save_test_scale(model, test, log)
+	    end
+	 end
+	 print("current: " .. score .. ", best: " .. best_score)
+      end
+   end
+end
+torch.manualSeed(settings.seed)
+cutorch.manualSeed(settings.seed)
+print(settings)
+train()

+ 62 - 0
waifu2x.lua

@@ -0,0 +1,62 @@
+require 'cudnn'
+require 'sys'
+require 'pl'
+require './lib/LeakyReLU'
+
+local iproc = require './lib/iproc'
+local reconstract = require './lib/reconstract'
+local image_loader = require './lib/image_loader'
+
+local BLOCK_OFFSET = 7
+
+torch.setdefaulttensortype('torch.FloatTensor')
+
+local function waifu2x()
+   local cmd = torch.CmdLine()
+   cmd:text()
+   cmd:text("waifu2x")
+   cmd:text("Options:")
+   cmd:option("-i", "images/miku_small.png", 'path of input image')
+   cmd:option("-o", "(auto)", 'path of output')
+   cmd:option("-model_dir", "./models", 'model directory')
+   cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale)')
+   cmd:option("-noise_level", 1, '(1|2)')
+   cmd:option("-crop_size", 128, 'crop size')
+   local opt = cmd:parse(arg)   
+   if opt.o == "(auto)" then
+      local name = path.basename(opt.i)
+      local e = path.extension(name)
+      local base = name:sub(0, name:len() - e:len())
+      opt.o = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
+   end
+   
+   local x = image_loader.load_float(opt.i)
+   local new_x = nil
+   local t = sys.clock()
+   if opt.m == "noise" then
+      local model = torch.load(path.join(opt.model_dir,
+					 ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
+      model:evaluate()
+      new_x = reconstract(model, x, BLOCK_OFFSET)
+   elseif opt.m == "scale" then
+      local model = torch.load(path.join(opt.model_dir, "scale2.0x_model.t7"), "ascii")
+      model:evaluate()
+      x = iproc.scale(x, x:size(3) * 2.0, x:size(2) * 2.0)
+      new_x = reconstract(model, x, BLOCK_OFFSET)
+   elseif opt.m == "noise_scale" then
+      local noise_model = torch.load(path.join(opt.model_dir,
+					       ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
+      local scale_model = torch.load(path.join(opt.model_dir, "scale2.0x_model.t7"), "ascii")
+
+      noise_model:evaluate()
+      scale_model:evaluate()
+      x = reconstract(noise_model, x, BLOCK_OFFSET)
+      x = iproc.scale(x, x:size(3) * 2.0, x:size(2) * 2.0)
+      new_x = reconstract(scale_model, x, BLOCK_OFFSET)
+   else
+      error("undefined method:" .. opt.method)
+   end
+   image.save(opt.o, new_x)
+   print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
+end
+waifu2x()

+ 201 - 0
web.lua

@@ -0,0 +1,201 @@
+local ROOT = '/home/nagadomi/dev/waifu2x'
+
+_G.TURBO_SSL = true -- Enable SSL
+local turbo = require 'turbo'
+local uuid = require 'uuid'
+local ffi = require 'ffi'
+local md5 = require 'md5'
+require 'torch'
+require 'cudnn'
+require 'pl'
+
+torch.setdefaulttensortype('torch.FloatTensor')
+torch.setnumthreads(4)
+
+package.path = package.path .. ";" .. path.join(ROOT, 'lib', '?.lua')
+
+require 'LeakyReLU'
+local iproc = require 'iproc'
+local reconstract = require 'reconstract'
+local image_loader = require 'image_loader'
+
+local noise1_model = torch.load(path.join(ROOT, "models", "noise1_model.t7"), "ascii")
+local noise2_model = torch.load(path.join(ROOT, "models", "noise2_model.t7"), "ascii")
+local scale20_model = torch.load(path.join(ROOT, "models", "scale2.0x_model.t7"), "ascii")
+
+local USE_CACHE = true
+local CACHE_DIR = path.join(ROOT, "cache")
+local MAX_NOISE_IMAGE = 2560 * 2560
+local MAX_SCALE_IMAGE = 1280 * 1280
+local CURL_OPTIONS = {
+   request_timeout = 10,
+   connect_timeout = 5,
+   allow_redirects = true,
+   max_redirects = 1
+}
+local CURL_MAX_SIZE = 2 * 1024 * 1024
+local BLOCK_OFFSET = 7 -- see srcnn.lua
+
+local function valid_size(x, scale)
+   if scale == 0 then
+      return x:size(2) * x:size(3) <= MAX_NOISE_IMAGE
+   else
+      return x:size(2) * x:size(3) <= MAX_SCALE_IMAGE
+   end
+end
+
+local function get_image(req)
+   local file = req:get_argument("file", "")
+   local url = req:get_argument("url", "")
+   local blob = nil
+   local img = nil
+   
+   if file and file:len() > 0 then
+      blob = file
+      img = image_loader.decode_float(blob)
+   elseif url and url:len() > 0 then
+      local res = coroutine.yield(
+	 turbo.async.HTTPClient({verify_ca=false},
+				nil,
+				CURL_MAX_SIZE):fetch(url, CURL_OPTIONS)
+      )
+      if res.code == 200 then
+	 local content_type = res.headers:get("Content-Type", true)
+	 if type(content_type) == "table" then
+	    content_type = content_type[1]
+	 end
+	 if content_type and content_type:find("image") then
+	    blob = res.body
+	    img = image_loader.decode_float(blob)
+	 end
+      end
+   end
+   return img, blob
+end
+
+local function apply_denoise1(x)
+   return reconstract(noise1_model, x, BLOCK_OFFSET)
+end
+local function apply_denoise2(x)
+   return reconstract(noise2_model, x, BLOCK_OFFSET)
+end
+local function apply_scale2x(x)
+   return reconstract(scale20_model,
+		      iproc.scale(x, x:size(3) * 2.0, x:size(2) * 2.0),
+		      BLOCK_OFFSET)
+end
+local function cache_do(cache, x, func)
+   if path.exists(cache) then
+      return image.load(cache)
+   else
+      x = func(x)
+      image.save(cache, x)
+      return x
+   end
+end
+
+local function client_disconnected(handler)
+   return not(handler.request and
+		 handler.request.connection and
+		 handler.request.connection.stream and
+		 (not handler.request.connection.stream:closed()))
+end
+
+local APIHandler = class("APIHandler", turbo.web.RequestHandler)
+function APIHandler:post()
+   if client_disconnected(self) then
+      self:set_status(400)
+      self:write("client disconnected")
+      return
+   end
+   local x, src = get_image(self)
+   local scale = tonumber(self:get_argument("scale", "0"))
+   local noise = tonumber(self:get_argument("noise", "0"))
+   if x and valid_size(x, scale) then
+      if USE_CACHE and (noise ~= 0 or scale ~= 0) then
+	 local hash = md5.sumhexa(src)
+	 local cache_noise1 = path.join(CACHE_DIR, hash .. "_noise1.png")
+	 local cache_noise2 = path.join(CACHE_DIR, hash .. "_noise2.png")
+	 local cache_scale = path.join(CACHE_DIR, hash .. "_scale.png")
+	 local cache_noise1_scale = path.join(CACHE_DIR, hash .. "_noise1_scale.png")
+	 local cache_noise2_scale = path.join(CACHE_DIR, hash .. "_noise2_scale.png")
+	 
+	 if noise == 1 then
+	    x = cache_do(cache_noise1, x, apply_denoise1)
+	 elseif noise == 2 then
+	    x = cache_do(cache_noise2, x, apply_denoise2)
+	 end
+	 if scale == 1 or scale == 2 then
+	    if noise == 1 then
+	       x = cache_do(cache_noise1_scale, x, apply_scale2x)
+	    elseif noise == 2 then
+	       x = cache_do(cache_noise2_scale, x, apply_scale2x)
+	    else
+	       x = cache_do(cache_scale, x, apply_scale2x)
+	    end
+	    if scale == 1 then
+	       x = iproc.scale(x,
+			       math.floor(x:size(3) * (1.6 / 2.0) + 0.5),
+			       math.floor(x:size(2) * (1.6 / 2.0) + 0.5),
+			       "Jinc")
+	    end
+	 end
+      elseif noise ~= 0 or scale ~= 0 then
+	 if noise == 1 then
+	    x = apply_denose1(x)
+	 elseif noise == 2 then
+	    x = apply_denose2(x)
+	 end
+	 if scale == 1 then
+	    local x16 = {math.floor(x:size(3) * 1.6 + 0.5), math.floor(x:size(2) * 1.6 + 0.5)}
+	    x = apply_scale2x(x)
+	    x = iproc.scale(x, x16[1], x16[2], "Jinc")
+	 elseif scale == 2 then
+	    x = apply_scale2x(x)
+	 end
+      end
+      local name = uuid() .. ".png"
+      local blob, len = image_loader.encode_png(x)
+      
+      self:set_header("Content-Disposition", string.format('filename="%s"', name))
+      self:set_header("Content-Type", "image/png")
+      self:set_header("Content-Length", string.format("%d", len))
+      self:write(ffi.string(blob, len))
+   else
+      if not x then
+	 self:set_status(400)
+	 self:write("ERROR: unsupported image format.")
+      else
+	 self:set_status(400)
+	 self:write("ERROR: max image size exceeded.")
+      end
+   end
+end
+local FormHandler = class("FormHandler", turbo.web.RequestHandler)
+function FormHandler:get()
+   local lang = self.request.headers:get("Accept-Language")
+   if lang then
+      local langs = utils.split(lang, ",")
+      for i = 1, #langs do
+	 langs[i] = utils.split(langs[i], ";")[1]
+      end
+      if langs[1] == "ja" then
+	 self:write(file.read(path.join(ROOT, "assets/index.ja.html")))
+      else
+	 self:write(file.read(path.join(ROOT, "assets/index.html")))
+      end
+   else
+      self:write(file.read(path.join(ROOT, "assets/index.html")))
+   end
+end
+
+local app = turbo.web.Application:new(
+   {
+      {"^/$", FormHandler},
+      {"^/index.html", turbo.web.StaticFileHandler, path.join(ROOT, "assets", "index.html")},
+      {"^/index.ja.html", turbo.web.StaticFileHandler, path.join(ROOT, "assets", "index.ja.html")},
+      {"^/api$", APIHandler},
+   }
+)
+app:listen(8888, "0.0.0.0", {max_body_size = CURL_MAX_SIZE})
+turbo.ioloop.instance():start()

Some files were not shown because too many files changed in this diff