|
@@ -1,7 +1,8 @@
|
|
|
require 'image'
|
|
|
local gm = require 'graphicsmagick'
|
|
|
local iproc = require 'iproc'
|
|
|
-local reconstruct = require 'reconstruct'
|
|
|
+local data_augmentation = require 'data_augmentation'
|
|
|
+
|
|
|
local pairwise_transform = {}
|
|
|
|
|
|
local function random_half(src, p)
|
|
@@ -14,43 +15,52 @@ local function random_half(src, p)
|
|
|
return src
|
|
|
end
|
|
|
end
|
|
|
-local function pcacov(x)
|
|
|
- local mean = torch.mean(x, 1)
|
|
|
- local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze())
|
|
|
- local c = torch.mm(xm:t(), xm)
|
|
|
- c:div(x:size(1) - 1)
|
|
|
- local ce, cv = torch.symeig(c, 'V')
|
|
|
- return ce, cv
|
|
|
-end
|
|
|
local function crop_if_large(src, max_size)
|
|
|
if src:size(2) > max_size and src:size(3) > max_size then
|
|
|
local yi = torch.random(0, src:size(2) - max_size)
|
|
|
local xi = torch.random(0, src:size(3) - max_size)
|
|
|
- return image.crop(src, xi, yi, xi + max_size, yi + max_size)
|
|
|
+ return iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
|
|
|
else
|
|
|
return src
|
|
|
end
|
|
|
end
|
|
|
-local function active_cropping(x, y, size, offset, p, tries)
|
|
|
+local function preprocess(src, crop_size, options)
|
|
|
+ local dest = src
|
|
|
+ if options.random_half then
|
|
|
+ dest = random_half(dest)
|
|
|
+ end
|
|
|
+ dest = crop_if_large(dest, math.max(crop_size * 4, 512))
|
|
|
+ dest = data_augmentation.flip(dest)
|
|
|
+ if options.color_noise then
|
|
|
+ dest = data_augmentation.color_noise(dest)
|
|
|
+ end
|
|
|
+ if options.overlay then
|
|
|
+ dest = data_augmentation.overlay(dest)
|
|
|
+ end
|
|
|
+ dest = data_augmentation.shift_1px(dest)
|
|
|
+
|
|
|
+ return dest
|
|
|
+end
|
|
|
+local function active_cropping(x, y, size, p, tries)
|
|
|
assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))
|
|
|
local r = torch.uniform()
|
|
|
if p < r then
|
|
|
- local xi = torch.random(offset, y:size(3) - (size + offset + 1))
|
|
|
- local yi = torch.random(offset, y:size(2) - (size + offset + 1))
|
|
|
- local xc = image.crop(x, xi, yi, xi + size, yi + size)
|
|
|
- local yc = image.crop(y, xi, yi, xi + size, yi + size)
|
|
|
- yc = yc:float():div(255)
|
|
|
- xc = xc:float():div(255)
|
|
|
+ local xi = torch.random(0, y:size(3) - (size + 1))
|
|
|
+ local yi = torch.random(0, y:size(2) - (size + 1))
|
|
|
+ local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
|
|
|
+ local yc = iproc.crop(y, xi, yi, xi + size, yi + size)
|
|
|
return xc, yc
|
|
|
else
|
|
|
local samples = {}
|
|
|
local sum_mse = 0
|
|
|
for i = 1, tries do
|
|
|
- local xi = torch.random(offset, y:size(3) - (size + offset + 1))
|
|
|
- local yi = torch.random(offset, y:size(2) - (size + offset + 1))
|
|
|
- local xc = image.crop(x, xi, yi, xi + size, yi + size):float():div(255)
|
|
|
- local yc = image.crop(y, xi, yi, xi + size, yi + size):float():div(255)
|
|
|
- local mse = (xc - yc):pow(2):mean()
|
|
|
+ local xi = torch.random(0, y:size(3) - (size + 1))
|
|
|
+ local yi = torch.random(0, y:size(2) - (size + 1))
|
|
|
+ local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
|
|
|
+ local yc = iproc.crop(y, xi, yi, xi + size, yi + size)
|
|
|
+ local xcf = iproc.byte2float(xc)
|
|
|
+ local ycf = iproc.byte2float(yc)
|
|
|
+ local mse = (xcf - ycf):pow(2):mean()
|
|
|
sum_mse = sum_mse + mse
|
|
|
table.insert(samples, {xc = xc, yc = yc, mse = mse})
|
|
|
end
|
|
@@ -63,87 +73,6 @@ local function active_cropping(x, y, size, offset, p, tries)
|
|
|
return samples[1].xc, samples[1].yc
|
|
|
end
|
|
|
end
|
|
|
-
|
|
|
-local function color_noise(src)
|
|
|
- local p = 0.1
|
|
|
- src = src:float():div(255)
|
|
|
- local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous()
|
|
|
- local ce, cv = pcacov(src_t)
|
|
|
- local color_scale = torch.Tensor(3):uniform(1 / (1 + p), 1 + p)
|
|
|
-
|
|
|
- pca_space = torch.mm(src_t, cv):t():contiguous()
|
|
|
- for i = 1, 3 do
|
|
|
- pca_space[i]:mul(color_scale[i])
|
|
|
- end
|
|
|
- x = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src)
|
|
|
- x[torch.lt(x, 0.0)] = 0.0
|
|
|
- x[torch.gt(x, 1.0)] = 1.0
|
|
|
-
|
|
|
- return x:mul(255):byte()
|
|
|
-end
|
|
|
-local function shift_1px(src)
|
|
|
- -- reducing the even/odd issue in nearest neighbor.
|
|
|
- local r = torch.random(1, 4)
|
|
|
-
|
|
|
-end
|
|
|
-local function flip_augment(x, y)
|
|
|
- local flip = torch.random(1, 4)
|
|
|
- if y then
|
|
|
- if flip == 1 then
|
|
|
- x = image.hflip(x)
|
|
|
- y = image.hflip(y)
|
|
|
- elseif flip == 2 then
|
|
|
- x = image.vflip(x)
|
|
|
- y = image.vflip(y)
|
|
|
- elseif flip == 3 then
|
|
|
- x = image.hflip(image.vflip(x))
|
|
|
- y = image.hflip(image.vflip(y))
|
|
|
- elseif flip == 4 then
|
|
|
- end
|
|
|
- return x, y
|
|
|
- else
|
|
|
- if flip == 1 then
|
|
|
- x = image.hflip(x)
|
|
|
- elseif flip == 2 then
|
|
|
- x = image.vflip(x)
|
|
|
- elseif flip == 3 then
|
|
|
- x = image.hflip(image.vflip(x))
|
|
|
- elseif flip == 4 then
|
|
|
- end
|
|
|
- return x
|
|
|
- end
|
|
|
-end
|
|
|
-local function overlay_augment(src, p)
|
|
|
- p = p or 0.25
|
|
|
- if torch.uniform() > (1.0 - p) then
|
|
|
- local r = torch.uniform(0.2, 0.8)
|
|
|
- local t = "float"
|
|
|
- if src:type() == "torch.ByteTensor" then
|
|
|
- src = src:float():div(255)
|
|
|
- t = "byte"
|
|
|
- end
|
|
|
- local flip = flip_augment(src)
|
|
|
- flip:mul(r):add(src * (1.0 - r))
|
|
|
- if t == "byte" then
|
|
|
- flip = flip:mul(255):byte()
|
|
|
- end
|
|
|
- return flip
|
|
|
- else
|
|
|
- return src
|
|
|
- end
|
|
|
-end
|
|
|
-local function data_augment(y, options)
|
|
|
- y = flip_augment(y)
|
|
|
- if options.color_noise then
|
|
|
- y = color_noise(y)
|
|
|
- end
|
|
|
- if options.overlay then
|
|
|
- y = overlay_augment(y)
|
|
|
- end
|
|
|
- return y
|
|
|
-end
|
|
|
-
|
|
|
-local INTERPOLATION_PADDING = 16
|
|
|
function pairwise_transform.scale(src, scale, size, offset, n, options)
|
|
|
local filters = {
|
|
|
"Box","Box", -- 0.012756949974688
|
|
@@ -152,13 +81,11 @@ function pairwise_transform.scale(src, scale, size, offset, n, options)
|
|
|
--"Hanning", -- 0.013761314529647
|
|
|
--"Hermite", -- 0.013850225205266
|
|
|
"SincFast", -- 0.014095824314306
|
|
|
- --"Jinc", -- 0.014244299255442
|
|
|
+ "Jinc", -- 0.014244299255442
|
|
|
}
|
|
|
- if options.random_half then
|
|
|
- src = random_half(src)
|
|
|
- end
|
|
|
local downscale_filter = filters[torch.random(1, #filters)]
|
|
|
- local y = data_augment(crop_if_large(src, math.max(size * 4, 512)), options)
|
|
|
+ local y = preprocess(src, size, options)
|
|
|
+ assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)
|
|
|
local down_scale = 1.0 / scale
|
|
|
local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,
|
|
|
y:size(2) * down_scale, downscale_filter),
|
|
@@ -167,20 +94,21 @@ function pairwise_transform.scale(src, scale, size, offset, n, options)
|
|
|
for i = 1, n do
|
|
|
local xc, yc = active_cropping(x, y,
|
|
|
size,
|
|
|
- INTERPOLATION_PADDING,
|
|
|
options.active_cropping_rate,
|
|
|
options.active_cropping_tries)
|
|
|
+ xc = iproc.byte2float(xc)
|
|
|
+ yc = iproc.byte2float(yc)
|
|
|
if options.rgb then
|
|
|
else
|
|
|
yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
|
|
|
xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
|
|
|
end
|
|
|
- table.insert(batch, {xc, image.crop(yc, offset, offset, size - offset, size - offset)})
|
|
|
+ table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
|
|
|
end
|
|
|
return batch
|
|
|
end
|
|
|
function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
|
|
|
- local y = data_augment(crop_if_large(src, math.max(size * 4, 512)), options)
|
|
|
+ local y = preprocess(src, size, options)
|
|
|
local x = y
|
|
|
for i = 1, #quality do
|
|
|
x = gm.Image(x, "RGB", "DHW")
|
|
@@ -194,20 +122,21 @@ function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
|
|
|
x:fromBlob(blob, len)
|
|
|
x = x:toTensor("byte", "RGB", "DHW")
|
|
|
end
|
|
|
+ -- TODO: use shift_1px after compression?
|
|
|
|
|
|
local batch = {}
|
|
|
for i = 1, n do
|
|
|
- local xc, yc = active_cropping(x, y, size, 0,
|
|
|
+ local xc, yc = active_cropping(x, y, size,
|
|
|
options.active_cropping_rate,
|
|
|
options.active_cropping_tries)
|
|
|
- xc, yc = flip_augment(xc, yc)
|
|
|
-
|
|
|
+ xc = iproc.byte2float(xc)
|
|
|
+ yc = iproc.byte2float(yc)
|
|
|
if options.rgb then
|
|
|
else
|
|
|
yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
|
|
|
xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
|
|
|
end
|
|
|
- table.insert(batch, {xc, image.crop(yc, offset, offset, size - offset, size - offset)})
|
|
|
+ table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
|
|
|
end
|
|
|
return batch
|
|
|
end
|
|
@@ -276,60 +205,36 @@ function pairwise_transform.jpeg(src, category, level, size, offset, n, options)
|
|
|
error("unknown category: " .. category)
|
|
|
end
|
|
|
end
|
|
|
-local function test_jpeg()
|
|
|
- local loader = require './image_loader'
|
|
|
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
- for i = 2, 9 do
|
|
|
- local xy = pairwise_transform.jpeg_(random_half(src),
|
|
|
- {i * 10}, 128, 0, 2, {color_noise = false, random_half = true, overlay = true, rgb = true})
|
|
|
- for i = 1, #xy do
|
|
|
- image.display({image = xy[i][1], legend = "y:" .. (i * 10), max=1,min=0})
|
|
|
- image.display({image = xy[i][2], legend = "x:" .. (i * 10),max=1,min=0})
|
|
|
- end
|
|
|
- --print(x:mean(), y:mean())
|
|
|
- end
|
|
|
-end
|
|
|
|
|
|
-local function test_scale()
|
|
|
- torch.setdefaulttensortype('torch.FloatTensor')
|
|
|
- local loader = require './image_loader'
|
|
|
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
+function pairwise_transform.test_jpeg(src)
|
|
|
local options = {color_noise = true,
|
|
|
random_half = true,
|
|
|
- overlay = false,
|
|
|
- active_cropping_rate = 1.5,
|
|
|
+ overlay = true,
|
|
|
+ active_cropping_rate = 0.5,
|
|
|
active_cropping_tries = 10,
|
|
|
rgb = true
|
|
|
}
|
|
|
for i = 1, 9 do
|
|
|
- local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)
|
|
|
- image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
|
|
|
- image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
|
|
|
- print(xy[1][1]:size(), xy[1][2]:size())
|
|
|
- --print(x:mean(), y:mean())
|
|
|
- end
|
|
|
-end
|
|
|
-local function test_color_noise()
|
|
|
- torch.setdefaulttensortype('torch.FloatTensor')
|
|
|
- local loader = require './image_loader'
|
|
|
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
- for i = 1, 10 do
|
|
|
- image.display(color_noise(src))
|
|
|
+ local xy = pairwise_transform.jpeg(src,
|
|
|
+ "anime_style_art",
|
|
|
+ torch.random(1, 2),
|
|
|
+ 128, 7, 1, options)
|
|
|
+ image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
|
|
|
+ image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
|
|
|
end
|
|
|
end
|
|
|
-local function test_overlay()
|
|
|
- torch.setdefaulttensortype('torch.FloatTensor')
|
|
|
- local loader = require './image_loader'
|
|
|
- local src = loader.load_byte("../images/miku_CC_BY-NC.jpg")
|
|
|
+function pairwise_transform.test_scale(src)
|
|
|
+ local options = {color_noise = true,
|
|
|
+ random_half = true,
|
|
|
+ overlay = true,
|
|
|
+ active_cropping_rate = 0.5,
|
|
|
+ active_cropping_tries = 10,
|
|
|
+ rgb = true
|
|
|
+ }
|
|
|
for i = 1, 10 do
|
|
|
- image.display(overlay_augment(src, 1.0))
|
|
|
+ local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)
|
|
|
+ image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
|
|
|
+ image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
|
|
|
end
|
|
|
end
|
|
|
-
|
|
|
---test_scale()
|
|
|
---test_jpeg()
|
|
|
---test_jpeg_scale()
|
|
|
---test_color_noise()
|
|
|
---test_overlay()
|
|
|
-
|
|
|
return pairwise_transform
|