Image Super-Resolution for Anime-Style Art
fork from : https://github.com/nagadomi/waifu2x.git

nagadomi 425898a3aa Don't use cudnn.benchmark mode when predicting 9 éve
appendix f399b34799 Added support for ru in nginx.conf 9 éve
assets b35798016e Added support for index.ru.html in web.lua 9 éve
cache 1273b3609e first commit 10 éve
images 8dea362bed sync from internal repo 9 éve
lib 490eb33a6b Minimize the weighted huber loss instead of the weighted mean square error 9 éve
models 33389d5d22 update anime_style_art_rgb/noise1 and anime_style_art_rgb/noise2 10 éve
tools 425898a3aa Don't use cudnn.benchmark mode when predicting 9 éve
.gitignore 3abc5a03e3 refactor 9 éve
LICENSE f2f5c882eb add LICENSE and NOTICE 10 éve
NOTICE f2f5c882eb add LICENSE and NOTICE 10 éve
README.md cb81d21064 Add notice for v1.0 branch 9 éve
convert_data.lua 4c691b4640 refactor 9 éve
train.lua 490eb33a6b Minimize the weighted huber loss instead of the weighted mean square error 9 éve
train.sh 8dea362bed sync from internal repo 9 éve
train_ukbench.sh 8dea362bed sync from internal repo 9 éve
waifu2x.lua 425898a3aa Don't use cudnn.benchmark mode when predicting 9 éve
web.lua 425898a3aa Don't use cudnn.benchmark mode when predicting 9 éve

README.md

v1.0 branch

This branch is under construction. This would break backwards compatibility sometimes.

waifu2x

Image Super-Resolution for anime-style-art using Deep Convolutional Neural Networks.

Demo-Application can be found at http://waifu2x.udp.jp/ .

Summary

Click to see the slide show.

slide

References

waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].

Public AMI

AMI ID: ami-0be01e4f
AMI NAME: waifu2x-server
Instance Type: g2.2xlarge
Region: US West (N.California)
OS: Ubuntu 14.04
User: ubuntu
Created at: 2015-08-12

Third Party Software

Third-Party

Dependencies

Hardware

  • NVIDIA GPU

Platform

lualocks packages (excludes torch7's default packages)

Installation

Setting Up the Command Line Tool Environment

(on Ubuntu 14.04)

Install CUDA

See: NVIDIA CUDA Getting Started Guide for Linux

Download CUDA

sudo dpkg -i cuda-repo-ubuntu1404_7.0-28_amd64.deb
sudo apt-get update
sudo apt-get install cuda

Install Torch7

See: Getting started with Torch

Validation

Test the waifu2x command line tool.

th waifu2x.lua

Setting Up the Web Application Environment (if you needed)

Install packages

luarocks install md5
luarocks install uuid
PREFIX=$HOME/torch/install luarocks install turbo

Web Application

Run.

th web.lua

View at: http://localhost:8812/

Command line tools

Noise Reduction

th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png

2x Upscaling

th waifu2x.lua -m scale -i input_image.png -o output_image.png

Noise Reduction + 2x Upscaling

th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png

See also images/gen.sh.

Video Encoding

* avconv is ffmpeg on Ubuntu 14.04.

Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)

mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3

Generating a image list.

find ./frames -name "*.png" |sort > data/frame.txt

waifu2x (for example, noise reduction)

mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png

Generating a video from waifu2xed images and audio.

avconv -f image2 -r 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4

Training Your Own Model

Data Preparation

Genrating a file list.

find /path/to/image/dir -name "*.png" > data/image_list.txt

(You should use PNG! In my case, waifu2x is trained with 3000 high-resolution-noise-free-PNG images.)

Converting training data.

th convert_data.lua

Training a Noise Reduction(level1) model

mkdir models/my_model
th train.lua -model_dir models/my_model -method noise -noise_level 1 -test images/miku_noisy.png
th cleanup_model.lua -model models/my_model/noise1_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 1 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise1_best.png.

Training a Noise Reduction(level2) model

th train.lua -model_dir models/my_model -method noise -noise_level 2 -test images/miku_noisy.png
th cleanup_model.lua -model models/my_model/noise2_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 2 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise2_best.png.

Training a 2x UpScaling model

th train.lua -model_dir models/my_model -method scale -scale 2 -test images/miku_small.png
th cleanup_model.lua -model models/my_model/scale2.0x_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m scale -scale 2 -i images/miku_small.png -o output.png

You can check the performance of model with models/my_model/scale2.0x_best.png.