Image Super-Resolution for Anime-Style Art
fork from : https://github.com/nagadomi/waifu2x.git

nagadomi c76c656e57 Fix merge 9 gadi atpakaļ
appendix a357c00b3f Update nginx.conf 9 gadi atpakaļ
assets 4e7527cc45 Add support for spanish 9 gadi atpakaļ
cache 1273b3609e first commit 10 gadi atpakaļ
data 243e9044cd add slide and appendix 10 gadi atpakaļ
images cc15a877bd Update supplementary material 9 gadi atpakaļ
lib 7708c7e75a Merge branch 'master' of github.com:nagadomi/waifu2x 9 gadi atpakaļ
models a897a83f31 Fix loading error in Y model 9 gadi atpakaļ
tools ff63a28540 Add tools/rebuild_model 9 gadi atpakaļ
webgen 4e7527cc45 Add support for spanish 9 gadi atpakaļ
.gitattributes dd64c0004d Add .gitattributes 9 gadi atpakaļ
.gitignore df65e9913a Update .gitignore 9 gadi atpakaļ
LICENSE f2f5c882eb add LICENSE and NOTICE 10 gadi atpakaļ
NOTICE cac46f33bf Update NOTICE 9 gadi atpakaļ
README.md beca52c27e Update README 9 gadi atpakaļ
convert_data.lua 620bd9c328 Fix undefined variable in convert_data.lua 9 gadi atpakaļ
train.lua 9f935835dd Add -save_history option 9 gadi atpakaļ
train.sh 903d945652 cleanup 9 gadi atpakaļ
train_photo.sh acdc29c25c Add missing training script 9 gadi atpakaļ
train_ukbench.sh b5db84d42e Change the jpeg config for the photo model 9 gadi atpakaļ
waifu2x.lua c4df6f11f4 Fix error in video conversion 9 gadi atpakaļ
web.lua c76c656e57 Fix merge 9 gadi atpakaļ

README.md

waifu2x

Image Super-Resolution for Anime-style art using Deep Convolutional Neural Networks. And it supports photo.

Demo-Application can be found at http://waifu2x.udp.jp/ .

Summary

Click to see the slide show.

slide

References

waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].

Public AMI

TODO

Third Party Software

Third-Party

Dependencies

Hardware

  • NVIDIA GPU

Platform

LuaRocks packages (excludes torch7's default packages)

  • lua-csnappy
  • md5
  • uuid
  • turbo

Installation

Setting Up the Command Line Tool Environment

(on Ubuntu 14.04)

Install CUDA

See: NVIDIA CUDA Getting Started Guide for Linux

Download CUDA

sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda

Install Package

sudo apt-get install libsnappy-dev

Install Torch7

See: Getting started with Torch

And install luarocks packages.

luarocks install graphicsmagick # upgrade
luarocks install lua-csnappy
luarocks install md5
luarocks install uuid
PREFIX=$HOME/torch/install luarocks install turbo # if you need to use web application

Getting waifu2x

git clone --depth 1 https://github.com/nagadomi/waifu2x.git

Validation

Testing the waifu2x command line tool.

th waifu2x.lua

Web Application

th web.lua

View at: http://localhost:8812/

Command line tools

Noise Reduction

th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png

2x Upscaling

th waifu2x.lua -m scale -i input_image.png -o output_image.png

Noise Reduction + 2x Upscaling

th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png

See also th waifu2x.lua -h.

Using photo model

Please add -model_dir models/photo to command line option, if you want to use photo model. For example,

th waifu2x.lua -model_dir models/photo -m scale -i input_image.png -o output_image.png

Video Encoding

* avconv is alias of ffmpeg on Ubuntu 14.04.

Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)

mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3

Generating a image list.

find ./frames -name "*.png" |sort > data/frame.txt

waifu2x (for example, noise reduction)

mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png

Generating a video from waifu2xed images and audio.

avconv -f image2 -r 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4

Training Your Own Model

Notes: If you have cuDNN library, you can use cudnn kernel with -backend cudnn option. And you can convert trained cudnn model to cunn model with tools/cudnn2cunn.lua.

Data Preparation

Genrating a file list.

find /path/to/image/dir -name "*.png" > data/image_list.txt

You should use noise free images. In my case, waifu2x is trained with 6000 high-resolution-noise-free-PNG images.

Converting training data.

th convert_data.lua

Training a Noise Reduction(level1) model

mkdir models/my_model
th train.lua -model_dir models/my_model -method noise -noise_level 1 -test images/miku_noisy.png
th cleanup_model.lua -model models/my_model/noise1_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 1 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise1_best.png.

Training a Noise Reduction(level2) model

th train.lua -model_dir models/my_model -method noise -noise_level 2 -test images/miku_noisy.png
th cleanup_model.lua -model models/my_model/noise2_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 2 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise2_best.png.

Training a 2x UpScaling model

th train.lua -model_dir models/my_model -method scale -scale 2 -test images/miku_small.png
th cleanup_model.lua -model models/my_model/scale2.0x_model.t7 -oformat ascii
# usage
th waifu2x.lua -model_dir models/my_model -m scale -scale 2 -i images/miku_small.png -o output.png

You can check the performance of model with models/my_model/scale2.0x_best.png.