123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- require 'image'
- local gm = require 'graphicsmagick'
- local iproc = require './iproc'
- local reconstract = require './reconstract'
- local pairwise_transform = {}
- function pairwise_transform.scale(src, scale, size, offset, options)
- options = options or {}
- local yi = torch.radom(0, src:size(2) - size - 1)
- local xi = torch.random(0, src:size(3) - size - 1)
- local down_scale = 1.0 / scale
- local y = image.crop(src, xi, yi, xi + size, yi + size)
- local flip = torch.random(1, 4)
- local nega = torch.random(0, 1)
- local filters = {
- "Box", -- 0.012756949974688
- "Blackman", -- 0.013191924552285
- --"Cartom", -- 0.013753536746706
- --"Hanning", -- 0.013761314529647
- --"Hermite", -- 0.013850225205266
- --"SincFast", -- 0.014095824314306
- --"Jinc", -- 0.014244299255442
- }
- local downscale_filter = filters[torch.random(1, #filters)]
-
- if r == 1 then
- y = image.hflip(y)
- elseif r == 2 then
- y = image.vflip(y)
- elseif r == 3 then
- y = image.hflip(image.vflip(y))
- elseif r == 4 then
- -- none
- end
- if options.color_augment then
- y = y:float():div(255)
- local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
- for i = 1, 3 do
- y[i]:mul(color_scale[i])
- end
- y[torch.lt(y, 0)] = 0
- y[torch.gt(y, 1.0)] = 1.0
- y = y:mul(255):byte()
- end
- local x = iproc.scale(y, y:size(3) * down_scale, y:size(2) * down_scale, downscale_filter)
- if options.noise and (options.noise_ratio or 0.5) > torch.uniform() then
- -- add noise
- local quality = {torch.random(70, 90)}
- for i = 1, #quality do
- x = gm.Image(x, "RGB", "DHW")
- x:format("jpeg")
- local blob, len = x:toBlob(quality[i])
- x:fromBlob(blob, len)
- x = x:toTensor("byte", "RGB", "DHW")
- end
- end
- if options.denoise_model and (options.denoise_ratio or 0.5) > torch.uniform() then
- x = reconstract(options.denoise_model, x:float():div(255), offset):mul(255):byte()
- end
- x = iproc.scale(x, y:size(3), y:size(2))
- y = y:float():div(255)
- x = x:float():div(255)
- y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
- x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
-
- return x, image.crop(y, offset, offset, size - offset, size - offset)
- end
- function pairwise_transform.jpeg_(src, quality, size, offset, color_augment)
- if color_augment == nil then color_augment = true end
- local yi = torch.random(0, src:size(2) - size - 1)
- local xi = torch.random(0, src:size(3) - size - 1)
- local y = src
- local x
- local flip = torch.random(1, 4)
- if color_augment then
- local color_scale = torch.Tensor(3):uniform(0.8, 1.2)
- y = y:float():div(255)
- for i = 1, 3 do
- y[i]:mul(color_scale[i])
- end
- y[torch.lt(y, 0)] = 0
- y[torch.gt(y, 1.0)] = 1.0
- y = y:mul(255):byte()
- end
- x = y
- for i = 1, #quality do
- x = gm.Image(x, "RGB", "DHW")
- x:format("jpeg")
- local blob, len = x:toBlob(quality[i])
- x:fromBlob(blob, len)
- x = x:toTensor("byte", "RGB", "DHW")
- end
-
- y = image.crop(y, xi, yi, xi + size, yi + size)
- x = image.crop(x, xi, yi, xi + size, yi + size)
- x = x:float():div(255)
- y = y:float():div(255)
-
- if flip == 1 then
- y = image.hflip(y)
- x = image.hflip(x)
- elseif flip == 2 then
- y = image.vflip(y)
- x = image.vflip(x)
- elseif flip == 3 then
- y = image.hflip(image.vflip(y))
- x = image.hflip(image.vflip(x))
- elseif flip == 4 then
- -- none
- end
- y = image.rgb2yuv(y)[1]:reshape(1, y:size(2), y:size(3))
- x = image.rgb2yuv(x)[1]:reshape(1, x:size(2), x:size(3))
- return x, image.crop(y, offset, offset, size - offset, size - offset)
- end
- function pairwise_transform.jpeg(src, level, size, offset, color_augment)
- if level == 1 then
- return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
- size, offset,
- color_augment)
- elseif level == 2 then
- local r = torch.uniform()
- if r > 0.6 then
- return pairwise_transform.jpeg_(src, {torch.random(27, 80)},
- size, offset,
- color_augment)
- elseif r > 0.3 then
- local quality1 = torch.random(32, 40)
- local quality2 = quality1 - 5
- return pairwise_transform.jpeg_(src, {quality1, quality2},
- size, offset,
- color_augment)
- else
- local quality1 = torch.random(47, 70)
- return pairwise_transform.jpeg_(src, {quality1, quality1 - 10, quality1 - 20},
- size, offset,
- color_augment)
- end
- else
- error("unknown noise level: " .. level)
- end
- end
- local function test_jpeg()
- local loader = require 'image_loader'
- local src = loader.load_byte("a.jpg")
- for i = 2, 9 do
- local y, x = pairwise_transform.jpeg_(src, {i * 10}, 128, 0, false)
- image.display({image = y, legend = "y:" .. (i * 10), max=1,min=0})
- image.display({image = x, legend = "x:" .. (i * 10),max=1,min=0})
- --print(x:mean(), y:mean())
- end
- end
- local function test_scale()
- require 'nn'
- require 'cudnn'
- require './LeakyReLU'
-
- local loader = require 'image_loader'
- local src = loader.load_byte("e.jpg")
- for i = 1, 9 do
- local y, x = pairwise_transform.scale(src, 2.0, "Box", 128, 7, {noise = true, denoise_model = torch.load("models/noise1_model.t7")})
- image.display({image = y, legend = "y:" .. (i * 10)})
- image.display({image = x, legend = "x:" .. (i * 10)})
- --print(x:mean(), y:mean())
- end
- end
- --test_jpeg()
- --test_scale()
- return pairwise_transform
|