Image Super-Resolution for Anime-Style Art
fork from : https://github.com/nagadomi/waifu2x.git

nagadomi a00becd65b remove AMI(temporary) 10 years ago
appendix 43614f46af add cron script; fix run-web.sh 10 years ago
assets ffcb460dfc fix hit 10 years ago
cache 1273b3609e first commit 10 years ago
data 243e9044cd add slide and appendix 10 years ago
images 1c1f2292d1 fix ugly chroma scaling 10 years ago
lib 1c1f2292d1 fix ugly chroma scaling 10 years ago
models 83548d7494 update noise1_model 10 years ago
.gitignore 2231423056 update training script 10 years ago
LICENSE f2f5c882eb add LICENSE and NOTICE 10 years ago
NOTICE f2f5c882eb add LICENSE and NOTICE 10 years ago
README.md a00becd65b remove AMI(temporary) 10 years ago
cleanup_model.lua 1273b3609e first commit 10 years ago
convert_data.lua 2231423056 update training script 10 years ago
train.lua 1c1f2292d1 fix ugly chroma scaling 10 years ago
train.sh 6a7ecfc45c fix typo #4 10 years ago
waifu2x.lua 2a30216798 add resume option 10 years ago
web.lua 1c1f2292d1 fix ugly chroma scaling 10 years ago

README.md

waifu2x

Image Super-Resolution for anime/fan-art using Deep Convolutional Neural Networks.

Demo-Application can be found at http://waifu2x.udp.jp/ .

Summary

Click to see the slide show.

slide

References

waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].

Public AMI

(maintenance)

Dependencies

Hardware

  • NVIDIA GPU (Compute Capability 3.0 or later)

Platform

Packages (luarocks)

NOTE: Turbo 1.1.3 has bug in file uploading. Please install from the master branch on github.

Installation

Setting Up the Command Line Tool Environment

(on Ubuntu 14.04)

Install Torch7

sudo apt-get install curl
curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-all | sudo bash 

see Torch (easy) install

Install CUDA and cuDNN.

Google! Search keyword is "install cuda ubuntu" and "install cudnn ubuntu"

Install packages

sudo luarocks install cutorch
sudo luarocks install cunn
sudo luarocks install cudnn
sudo apt-get install graphicsmagick libgraphicsmagick-dev
sudo luarocks install graphicsmagick

Test the waifu2x command line tool.

th waifu2x.lua

Setting Up the Web Application Environment (if you needed)

Install luajit 2.0.4

curl -O http://luajit.org/download/LuaJIT-2.0.4.tar.gz
tar -xzvf LuaJIT-2.0.4.tar.gz
cd LuaJIT-2.0.4
make
sudo make install

Install packages

Install luarocks packages.

sudo luarocks install md5
sudo luarocks install uuid

Install turbo.

git clone https://github.com/kernelsauce/turbo.git
cd turbo
sudo luarocks make rockspecs/turbo-dev-1.rockspec 

Web Application

Please edit the first line in web.lua.

local ROOT = '/path/to/waifu2x/dir'

Run.

th web.lua

View at: http://localhost:8812/

Command line tools

Noise Reduction

th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png

2x Upscaling

th waifu2x.lua -m scale -i input_image.png -o output_image.png

Noise Reduction + 2x Upscaling

th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png

See also images/gen.sh.

Video Encoding

* avconv is ffmpeg on Ubuntu 14.04.

Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)

mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3

Generating a image list.

find ./frames -name "*.png" |sort > data/frame.txt

waifu2x (for example, noise reduction)

mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png

Generating a video from waifu2xed images and audio.

avconv -f image2 -r 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4

Training Your Own Model

Data Preparation

Genrating a file list.

find /path/to/image/dir -name "*.png" > data/image_list.txt

(You should use PNG! In my case, waifu2x is trained with 3000 high-resolution-beautiful-PNG images.)

Converting training data.

th convert_data.lua

Training a Noise Reduction(level1) model

th train.lua -method noise -noise_level 1 -test images/miku_noisy.png
th cleanup_model.lua -model models/noise1_model.t7 -oformat ascii

You can check the performance of model with models/noise1_best.png.

Training a Noise Reduction(level2) model

th train.lua -method noise -noise_level 2 -test images/miku_noisy.png
th cleanup_model.lua -model models/noise2_model.t7 -oformat ascii

You can check the performance of model with models/noise2_best.png.

Training a 2x UpScaling model

th train.lua -method scale -scale 2 -test images/miku_small.png
th cleanup_model.lua -model models/scale2.0x_model.t7 -oformat ascii

You can check the performance of model with models/scale2.0x_best.png.