Image Super-Resolution for Anime-Style Art
fork from : https://github.com/nagadomi/waifu2x.git

nagadomi 7d156917ae Add dockerhub link 6 年之前
appendix 77b8614622 Rename systemd service file 6 年之前
assets 48ba85c8af Add missing file for d2edb688e95ea4c7096e05979809320d4873607b 6 年之前
cache 1273b3609e first commit 10 年之前
data 243e9044cd add slide and appendix 10 年之前
image_generators 3b09bff8cf randomly swap fg/bg color in dots/gen 9 年之前
images 8f4f54d955 Update images 6 年之前
lib 128222332b Add license of RandomBinaryConvolution.lua 6 年之前
models 563c5b9fc1 Update models/anime_style_art_rgb link 6 年之前
tools 2f24c079fc Add pretrained cunet/upcunet models for art 6 年之前
webgen d2edb688e9 Add Romanian translation; Translated by Alucard Sama04 6 年之前
.dockerignore 0e18c08f1e Add .dockerignore (exclude .git from being copied to docker image) 8 年之前
.gitattributes ef3658bf1d Update .gitattributes 6 年之前
.gitignore ef3658bf1d Update .gitattributes 6 年之前
Dockerfile 7dddb75bb8 Update Dockerfile 6 年之前
LICENSE f2f5c882eb add LICENSE and NOTICE 10 年之前
NOTICE 128222332b Add license of RandomBinaryConvolution.lua 6 年之前
README.md 7d156917ae Add dockerhub link 6 年之前
convert_data.lua 0883b043ce Fix a bug when specifying individual downscaling filter 6 年之前
install_lua_modules.sh ff8e047abb Fix missing uuid module 6 年之前
train.lua aea254eab5 Rename RandomBinaryCriterion to LBPCriterion 6 年之前
waifu2x.lua 64cd0959df Update waifu2x.lua, default model=cunet/art 6 年之前
web.lua 1b946a5484 CLEAN_MODEL=true by default. No overhead 6 年之前

README.md

waifu2x

Image Super-Resolution for Anime-style art using Deep Convolutional Neural Networks. And it supports photo.

The demo application can be found at http://waifu2x.udp.jp/ .

Note that I only provide this website and this repository. Other software or website claiming "waifu2x" has nothing to do with me.

Summary

Click to see the slide show.

slide

References

waifu2x is inspired by SRCNN [1]. 2D character picture (HatsuneMiku) is licensed under CC BY-NC by piapro [2].

Public AMI

TODO

Third Party Software

Third-Party

If you are a windows user, I recommend you to use waifu2x-caffe(Just download from releases tab) or waifu2x-conver-cpp.

Dependencies

Hardware

  • NVIDIA GPU

Platform

LuaRocks packages (excludes torch7's default packages)

  • lua-csnappy
  • md5
  • uuid
  • csvigo
  • turbo

Installation

Setting Up the Command Line Tool Environment

(on Ubuntu 16.04)

Install CUDA

See: NVIDIA CUDA Getting Started Guide for Linux

Download CUDA

Note: Torch does not supported CUDA10. CUDA9.2 is recommended.

sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda

Install Package

sudo apt-get install libsnappy-dev
sudo apt-get install libgraphicsmagick1-dev
sudo apt-get install libssl1.0-dev # for web server

Note: waifu2x requires little-cms2 linked graphicsmagick. if you use macOS/homebrew, See #174.

Install Torch7

See: Getting started with Torch. For CUDA9.x/CUDA8.x, see #222, For CUDA10, see #253.

Getting waifu2x

git clone --depth 1 https://github.com/nagadomi/waifu2x.git

and install lua modules.

cd waifu2x
./install_lua_modules.sh

Validation

Testing the waifu2x command line tool.

th waifu2x.lua

Web Application

th web.lua

View at: http://localhost:8812/

Command line tools

Notes: If you have cuDNN library, than you can use cuDNN with -force_cudnn 1 option. cuDNN is too much faster than default kernel. If you got GPU out of memory error, you can avoid it with -crop_size option (e.g. -crop_size 128).

Noise Reduction

th waifu2x.lua -m noise -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 0 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 2 -i input_image.png -o output_image.png
th waifu2x.lua -m noise -noise_level 3 -i input_image.png -o output_image.png

2x Upscaling

th waifu2x.lua -m scale -i input_image.png -o output_image.png

Noise Reduction + 2x Upscaling

th waifu2x.lua -m noise_scale -noise_level 1 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 0 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 2 -i input_image.png -o output_image.png
th waifu2x.lua -m noise_scale -noise_level 3 -i input_image.png -o output_image.png

Batch conversion

find /path/to/imagedir -name "*.png" -o -name "*.jpg" > image_list.txt
th waifu2x.lua -m scale -l ./image_list.txt -o /path/to/outputdir/prefix_%d.png

The output format supports %s and %d(e.g. %06d). %s will be replaced the basename of the source filename. %d will be replaced a sequence number. For example, when input filename is piyo.png, %s_%03d.png will be replaced piyo_001.png.

See also th waifu2x.lua -h.

Using photo model

Please add -model_dir models/photo to command line option, if you want to use photo model. For example,

th waifu2x.lua -model_dir models/photo -m scale -i input_image.png -o output_image.png

Video Encoding

* avconv is alias of ffmpeg on Ubuntu 14.04.

Extracting images and audio from a video. (range: 00:09:00 ~ 00:12:00)

mkdir frames
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 -r 24 -f image2 frames/%06d.png
avconv -i data/raw.avi -ss 00:09:00 -t 00:03:00 audio.mp3

Generating a image list.

find ./frames -name "*.png" |sort > data/frame.txt

waifu2x (for example, noise reduction)

mkdir new_frames
th waifu2x.lua -m noise -noise_level 1 -resume 1 -l data/frame.txt -o new_frames/%d.png

Generating a video from waifu2xed images and audio.

avconv -f image2 -framerate 24 -i new_frames/%d.png -i audio.mp3 -r 24 -vcodec libx264 -crf 16 video.mp4

Train Your Own Model

Note1: If you have cuDNN library, you can use cudnn kernel with -backend cudnn option. And, you can convert trained cudnn model to cunn model with tools/rebuild.lua.

Note2: The command that was used to train for waifu2x's pretrained models is available at appendix/train_upconv_7_art.sh, appendix/train_upconv_7_photo.sh. Maybe it is helpful.

Data Preparation

Genrating a file list.

find /path/to/image/dir -name "*.png" > data/image_list.txt

You should use noise free images. In my case, waifu2x is trained with 6000 high-resolution-noise-free-PNG images.

Converting training data.

th convert_data.lua

Train a Noise Reduction(level1) model

mkdir models/my_model
th train.lua -model_dir models/my_model -method noise -noise_level 1 -test images/miku_noisy.png
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 1 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise1_best.png.

Train a Noise Reduction(level2) model

th train.lua -model_dir models/my_model -method noise -noise_level 2 -test images/miku_noisy.png
# usage
th waifu2x.lua -model_dir models/my_model -m noise -noise_level 2 -i images/miku_noisy.png -o output.png

You can check the performance of model with models/my_model/noise2_best.png.

Train a 2x UpScaling model

th train.lua -model upconv_7 -model_dir models/my_model -method scale -scale 2 -test images/miku_small.png
# usage
th waifu2x.lua -model_dir models/my_model -m scale -scale 2 -i images/miku_small.png -o output.png

You can check the performance of model with models/my_model/scale2.0x_best.png.

Train a 2x and noise reduction fusion model

th train.lua -model upconv_7 -model_dir models/my_model -method noise_scale -scale 2 -noise_level 1 -test images/miku_small.png
# usage
th waifu2x.lua -model_dir models/my_model -m noise_scale -scale 2 -noise_level 1 -i images/miku_small.png -o output.png

You can check the performance of model with models/my_model/noise1_scale2.0x_best.png.

Docker

( Docker image is available at https://hub.docker.com/r/nagadomi/waifu2x )

Requires nvidia-docker.

docker build -t waifu2x .
nvidia-docker run -p 8812:8812 waifu2x th web.lua
nvidia-docker run -v `pwd`/images:/images waifu2x th waifu2x.lua -force_cudnn 1 -m scale -scale 2 -i /images/miku_small.png -o /images/output.png

Note that running waifu2x in without JIT caching is very slow, which is what would happen if you use docker. For a workaround, you can mount a host volume to the CUDA_CACHE_PATH, for instance,

nvidia-docker run -v $PWD/ComputeCache:/root/.nv/ComputeCache waifu2x th waifu2x.lua --help