|
@@ -15,7 +15,6 @@ local function convert_image(opt)
|
|
|
local x = image_loader.load_float(opt.i)
|
|
|
local new_x = nil
|
|
|
local t = sys.clock()
|
|
|
-
|
|
|
if opt.o == "(auto)" then
|
|
|
local name = path.basename(opt.i)
|
|
|
local e = path.extension(name)
|
|
@@ -23,8 +22,7 @@ local function convert_image(opt)
|
|
|
opt.o = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
|
|
|
end
|
|
|
if opt.m == "noise" then
|
|
|
- local model = torch.load(path.join(opt.model_dir,
|
|
|
- ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
|
|
|
+ local model = torch.load(path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
|
|
|
model:evaluate()
|
|
|
new_x = reconstruct.image(model, x, BLOCK_OFFSET)
|
|
|
elseif opt.m == "scale" then
|
|
@@ -32,8 +30,7 @@ local function convert_image(opt)
|
|
|
model:evaluate()
|
|
|
new_x = reconstruct.scale(model, opt.scale, x, BLOCK_OFFSET)
|
|
|
elseif opt.m == "noise_scale" then
|
|
|
- local noise_model = torch.load(path.join(opt.model_dir,
|
|
|
- ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
|
|
|
+ local noise_model = torch.load(path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level)), "ascii")
|
|
|
local scale_model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
|
|
|
noise_model:evaluate()
|
|
|
scale_model:evaluate()
|
|
@@ -62,37 +59,51 @@ local function convert_frames(opt)
|
|
|
end
|
|
|
fp:close()
|
|
|
for i = 1, #lines do
|
|
|
- local x = image_loader.load_float(lines[i])
|
|
|
- local new_x = nil
|
|
|
- if opt.m == "noise" and opt.noise_level == 1 then
|
|
|
- new_x = reconstruct.image(noise1_model, x, BLOCK_OFFSET)
|
|
|
- elseif opt.m == "noise" and opt.noise_level == 2 then
|
|
|
- new_x = reconstruct.image(noise2_model, x, BLOCK_OFFSET)
|
|
|
- elseif opt.m == "scale" then
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
- elseif opt.m == "noise_scale" and opt.noise_level == 1 then
|
|
|
- x = reconstruct.image(noise1_model, x, BLOCK_OFFSET)
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
- elseif opt.m == "noise_scale" and opt.noise_level == 2 then
|
|
|
- x = reconstruct.image(noise2_model, x, BLOCK_OFFSET)
|
|
|
- new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
- else
|
|
|
- error("undefined method:" .. opt.method)
|
|
|
- end
|
|
|
- local output = nil
|
|
|
- if opt.o == "(auto)" then
|
|
|
- local name = path.basename(lines[i])
|
|
|
- local e = path.extension(name)
|
|
|
- local base = name:sub(0, name:len() - e:len())
|
|
|
- output = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
|
|
|
- else
|
|
|
- output = string.format(opt.o, i)
|
|
|
- end
|
|
|
- image.save(output, new_x)
|
|
|
- xlua.progress(i, #lines)
|
|
|
- if i % 10 == 0 then
|
|
|
- collectgarbage()
|
|
|
- end
|
|
|
+ if file_exists(string.format(opt.o, i)) == false then
|
|
|
+ local x = image_loader.load_float(lines[i])
|
|
|
+ local new_x = nil
|
|
|
+ if opt.m == "noise" and opt.noise_level == 1 then
|
|
|
+ new_x = reconstruct.image(noise1_model, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "noise" and opt.noise_level == 2 then
|
|
|
+ new_x = reconstruct.image(noise2_model, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "scale" then
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "noise_scale" and opt.noise_level == 1 then
|
|
|
+ x = reconstruct.image(noise1_model, x, BLOCK_OFFSET)
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "noise_scale" and opt.noise_level == 2 then
|
|
|
+ x = reconstruct.image(noise2_model, x, BLOCK_OFFSET)
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
+ else
|
|
|
+ error("undefined method:" .. opt.method)
|
|
|
+ end
|
|
|
+ local output = nil
|
|
|
+ if opt.o == "(auto)" then
|
|
|
+ local name = path.basename(lines[i])
|
|
|
+ local e = path.extension(name)
|
|
|
+ local base = name:sub(0, name:len() - e:len())
|
|
|
+ output = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
|
|
|
+ else
|
|
|
+ output = string.format(opt.o, i)
|
|
|
+ end
|
|
|
+ image.save(output, new_x)
|
|
|
+ xlua.progress(i, #lines)
|
|
|
+ if i % 10 == 0 then
|
|
|
+ collectgarbage()
|
|
|
+ end
|
|
|
+ else
|
|
|
+ xlua.progress(i, #lines)
|
|
|
+ end
|
|
|
+ end
|
|
|
+end
|
|
|
+
|
|
|
+function file_exists(name)
|
|
|
+ local f=io.open(name,"r")
|
|
|
+ if f~=nil then
|
|
|
+ io.close(f)
|
|
|
+ return true
|
|
|
+ else
|
|
|
+ return false
|
|
|
end
|
|
|
end
|
|
|
|