|
@@ -11,50 +11,110 @@ local BLOCK_OFFSET = 7
|
|
|
|
|
|
torch.setdefaulttensortype('torch.FloatTensor')
|
|
|
|
|
|
-local function waifu2x()
|
|
|
- local cmd = torch.CmdLine()
|
|
|
- cmd:text()
|
|
|
- cmd:text("waifu2x")
|
|
|
- cmd:text("Options:")
|
|
|
- cmd:option("-i", "images/miku_small.png", 'path of input image')
|
|
|
- cmd:option("-o", "(auto)", 'path of output')
|
|
|
- cmd:option("-model_dir", "./models", 'model directory')
|
|
|
- cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale)')
|
|
|
- cmd:option("-noise_level", 1, '(1|2)')
|
|
|
- cmd:option("-crop_size", 128, 'crop size')
|
|
|
- local opt = cmd:parse(arg)
|
|
|
+local function convert_image(opt)
|
|
|
+ local x = image_loader.load_float(opt.i)
|
|
|
+ local new_x = nil
|
|
|
+ local t = sys.clock()
|
|
|
+
|
|
|
if opt.o == "(auto)" then
|
|
|
local name = path.basename(opt.i)
|
|
|
local e = path.extension(name)
|
|
|
local base = name:sub(0, name:len() - e:len())
|
|
|
opt.o = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
|
|
|
end
|
|
|
-
|
|
|
- local x = image_loader.load_float(opt.i)
|
|
|
- local new_x = nil
|
|
|
- local t = sys.clock()
|
|
|
if opt.m == "noise" then
|
|
|
local model = torch.load(path.join(opt.model_dir,
|
|
|
("noise%d_model.t7"):format(opt.noise_level)), "ascii")
|
|
|
model:evaluate()
|
|
|
new_x = reconstruct.image(model, x, BLOCK_OFFSET)
|
|
|
elseif opt.m == "scale" then
|
|
|
- local model = torch.load(path.join(opt.model_dir, "scale2.0x_model.t7"), "ascii")
|
|
|
+ local model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
|
|
|
model:evaluate()
|
|
|
- new_x = reconstruct.scale(model, 2.0, x, BLOCK_OFFSET)
|
|
|
+ new_x = reconstruct.scale(model, opt.scale, x, BLOCK_OFFSET)
|
|
|
elseif opt.m == "noise_scale" then
|
|
|
local noise_model = torch.load(path.join(opt.model_dir,
|
|
|
("noise%d_model.t7"):format(opt.noise_level)), "ascii")
|
|
|
- local scale_model = torch.load(path.join(opt.model_dir, "scale2.0x_model.t7"), "ascii")
|
|
|
-
|
|
|
+ local scale_model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
|
|
|
noise_model:evaluate()
|
|
|
scale_model:evaluate()
|
|
|
x = reconstruct.image(noise_model, x, BLOCK_OFFSET)
|
|
|
- new_x = reconstruct.scale(scale_model, 2.0, x, BLOCK_OFFSET)
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
else
|
|
|
error("undefined method:" .. opt.method)
|
|
|
end
|
|
|
image.save(opt.o, new_x)
|
|
|
print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
|
|
|
end
|
|
|
+local function convert_frames(opt)
|
|
|
+ local noise1_model = torch.load(path.join(opt.model_dir, "noise1_model.t7"), "ascii")
|
|
|
+ local noise2_model = torch.load(path.join(opt.model_dir, "noise2_model.t7"), "ascii")
|
|
|
+ local scale_model = torch.load(path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale)), "ascii")
|
|
|
+
|
|
|
+ noise1_model:evaluate()
|
|
|
+ noise2_model:evaluate()
|
|
|
+ scale_model:evaluate()
|
|
|
+
|
|
|
+ local fp = io.open(opt.l)
|
|
|
+ local count = 0
|
|
|
+ local lines = {}
|
|
|
+ for line in fp:lines() do
|
|
|
+ table.insert(lines, line)
|
|
|
+ end
|
|
|
+ fp:close()
|
|
|
+ for i = 1, #lines do
|
|
|
+ local x = image_loader.load_float(lines[i])
|
|
|
+ local new_x = nil
|
|
|
+ if opt.m == "noise" and opt.noise_level == 1 then
|
|
|
+ new_x = reconstruct.image(noise1_model, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "noise" and opt.noise_level == 2 then
|
|
|
+ new_x = reconstruct.image(noise2_model, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "scale" then
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "noise_scale" and opt.noise_level == 1 then
|
|
|
+ x = reconstruct.image(noise1_model, x, BLOCK_OFFSET)
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
+ elseif opt.m == "noise_scale" and opt.noise_level == 2 then
|
|
|
+ x = reconstruct.image(noise2_model, x, BLOCK_OFFSET)
|
|
|
+ new_x = reconstruct.scale(scale_model, opt.scale, x, BLOCK_OFFSET)
|
|
|
+ else
|
|
|
+ error("undefined method:" .. opt.method)
|
|
|
+ end
|
|
|
+ local output = nil
|
|
|
+ if opt.o == "(auto)" then
|
|
|
+ local name = path.basename(lines[i])
|
|
|
+ local e = path.extension(name)
|
|
|
+ local base = name:sub(0, name:len() - e:len())
|
|
|
+ output = path.join(path.dirname(opt.i), string.format("%s(%s).png", base, opt.m))
|
|
|
+ else
|
|
|
+ output = string.format(opt.o, i)
|
|
|
+ end
|
|
|
+ image.save(output, new_x)
|
|
|
+ xlua.progress(i, #lines)
|
|
|
+ if i % 10 == 0 then
|
|
|
+ collectgarbage()
|
|
|
+ end
|
|
|
+ end
|
|
|
+end
|
|
|
+
|
|
|
+local function waifu2x()
|
|
|
+ local cmd = torch.CmdLine()
|
|
|
+ cmd:text()
|
|
|
+ cmd:text("waifu2x")
|
|
|
+ cmd:text("Options:")
|
|
|
+ cmd:option("-i", "images/miku_small.png", 'path of the input image')
|
|
|
+ cmd:option("-l", "", 'path of the image-list')
|
|
|
+ cmd:option("-scale", 2, 'scale factor')
|
|
|
+ cmd:option("-o", "(auto)", 'path of the output file')
|
|
|
+ cmd:option("-model_dir", "./models", 'model directory')
|
|
|
+ cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale)')
|
|
|
+ cmd:option("-noise_level", 1, '(1|2)')
|
|
|
+ cmd:option("-crop_size", 128, 'patch size per process')
|
|
|
+
|
|
|
+ local opt = cmd:parse(arg)
|
|
|
+ if string.len(opt.l) == 0 then
|
|
|
+ convert_image(opt)
|
|
|
+ else
|
|
|
+ convert_frames(opt)
|
|
|
+ end
|
|
|
+end
|
|
|
waifu2x()
|