|
@@ -266,6 +266,107 @@ function srcnn.upconv_7(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
+
|
|
|
+-- large version of upconv_7
|
|
|
+-- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.
|
|
|
+function srcnn.upconv_7l(backend, ch)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upconv_7l"
|
|
|
+ model.w2nn_offset = 14
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
+-- layerwise linear blending with skip connections
|
|
|
+-- Note: PSNR: upconv_7 < skiplb_7 < upconv_7l
|
|
|
+function srcnn.skiplb_7(backend, ch)
|
|
|
+ local function skip(backend, i, o)
|
|
|
+ local con = nn.Concat(2)
|
|
|
+ local conv = nn.Sequential()
|
|
|
+ conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
|
|
|
+ conv:add(nn.LeakyReLU(0.1, true))
|
|
|
+
|
|
|
+ -- depth concat
|
|
|
+ con:add(conv)
|
|
|
+ con:add(nn.Identify()) -- skip
|
|
|
+ return con
|
|
|
+ end
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(skip(backend, ch, 16))
|
|
|
+ model:add(skip(backend, 16+ch, 32))
|
|
|
+ model:add(skip(backend, 32+16+ch, 64))
|
|
|
+ model:add(skip(backend, 64+32+16+ch, 128))
|
|
|
+ model:add(skip(backend, 128+64+32+16+ch, 128))
|
|
|
+ model:add(skip(backend, 128+128+64+32+16+ch, 256))
|
|
|
+ -- input of last layer = [all layerwise output(contains input layer)].flatten
|
|
|
+ model:add(SpatialFullConvolution(backend, 256+128+128+64+32+16+ch, ch, 4, 4, 2, 2, 3, 3):noBias()) -- linear blend
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+ model.w2nn_arch_name = "skiplb_7"
|
|
|
+ model.w2nn_offset = 14
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
+-- dilated convolution + deconvolution
|
|
|
+-- Note: This model is not better than upconv_7. Maybe becuase of under-fitting.
|
|
|
+function srcnn.dilated_upconv_7(backend, ch)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(nn.SpatialDilatedConvolution(128, 128, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
+ model:add(w2nn.InplaceClip01())
|
|
|
+ --model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "dilated_upconv_7"
|
|
|
+ model.w2nn_offset = 20
|
|
|
+ model.w2nn_scale_factor = 2
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
model_name = model_name or "vgg_7"
|
|
|
backend = backend or "cunn"
|
|
@@ -287,7 +388,10 @@ function srcnn.create(model_name, backend, color)
|
|
|
end
|
|
|
end
|
|
|
|
|
|
---local model = srcnn.upconv_6("cunn", 3):cuda()
|
|
|
---print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
+--[[
|
|
|
+local model = srcnn.upconv_7l("cunn", 3):cuda()
|
|
|
+print(model)
|
|
|
+print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
+--]]
|
|
|
|
|
|
return srcnn
|