srcnn.lua 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. require 'w2nn'
  2. -- ref: http://arxiv.org/abs/1502.01852
  3. -- ref: http://arxiv.org/abs/1501.00092
  4. local srcnn = {}
  5. function nn.SpatialConvolutionMM:reset(stdv)
  6. local fin = self.kW * self.kH * self.nInputPlane
  7. local fout = self.kW * self.kH * self.nOutputPlane
  8. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  9. self.weight:normal(0, stdv)
  10. self.bias:zero()
  11. end
  12. function nn.SpatialFullConvolution:reset(stdv)
  13. local fin = self.kW * self.kH * self.nInputPlane
  14. local fout = self.kW * self.kH * self.nOutputPlane
  15. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  16. self.weight:normal(0, stdv)
  17. self.bias:zero()
  18. end
  19. if cudnn and cudnn.SpatialConvolution then
  20. function cudnn.SpatialConvolution:reset(stdv)
  21. local fin = self.kW * self.kH * self.nInputPlane
  22. local fout = self.kW * self.kH * self.nOutputPlane
  23. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  24. self.weight:normal(0, stdv)
  25. self.bias:zero()
  26. end
  27. function cudnn.SpatialFullConvolution:reset(stdv)
  28. local fin = self.kW * self.kH * self.nInputPlane
  29. local fout = self.kW * self.kH * self.nOutputPlane
  30. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  31. self.weight:normal(0, stdv)
  32. self.bias:zero()
  33. end
  34. end
  35. function nn.SpatialConvolutionMM:clearState()
  36. if self.gradWeight then
  37. self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
  38. end
  39. if self.gradBias then
  40. self.gradBias:resize(self.nOutputPlane):zero()
  41. end
  42. return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
  43. end
  44. function srcnn.channels(model)
  45. if model.w2nn_channels ~= nil then
  46. return model.w2nn_channels
  47. else
  48. return model:get(model:size() - 1).weight:size(1)
  49. end
  50. end
  51. function srcnn.backend(model)
  52. local conv = model:findModules("cudnn.SpatialConvolution")
  53. local fullconv = model:findModules("cudnn.SpatialFullConvolution")
  54. if #conv > 0 or #fullconv > 0 then
  55. return "cudnn"
  56. else
  57. return "cunn"
  58. end
  59. end
  60. function srcnn.color(model)
  61. local ch = srcnn.channels(model)
  62. if ch == 3 then
  63. return "rgb"
  64. else
  65. return "y"
  66. end
  67. end
  68. function srcnn.name(model)
  69. if model.w2nn_arch_name ~= nil then
  70. return model.w2nn_arch_name
  71. else
  72. local conv = model:findModules("nn.SpatialConvolutionMM")
  73. if #conv == 0 then
  74. conv = model:findModules("cudnn.SpatialConvolution")
  75. end
  76. if #conv == 7 then
  77. return "vgg_7"
  78. elseif #conv == 12 then
  79. return "vgg_12"
  80. else
  81. error("unsupported model")
  82. end
  83. end
  84. end
  85. function srcnn.offset_size(model)
  86. if model.w2nn_offset ~= nil then
  87. return model.w2nn_offset
  88. else
  89. local name = srcnn.name(model)
  90. if name:match("vgg_") then
  91. local conv = model:findModules("nn.SpatialConvolutionMM")
  92. if #conv == 0 then
  93. conv = model:findModules("cudnn.SpatialConvolution")
  94. end
  95. local offset = 0
  96. for i = 1, #conv do
  97. offset = offset + (conv[i].kW - 1) / 2
  98. end
  99. return math.floor(offset)
  100. else
  101. error("unsupported model")
  102. end
  103. end
  104. end
  105. function srcnn.scale_factor(model)
  106. if model.w2nn_scale_factor ~= nil then
  107. return model.w2nn_scale_factor
  108. else
  109. local name = srcnn.name(model)
  110. if name == "upconv_7" then
  111. return 2
  112. elseif name == "upconv_8_4x" then
  113. return 4
  114. else
  115. return 1
  116. end
  117. end
  118. end
  119. local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  120. if backend == "cunn" then
  121. return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  122. elseif backend == "cudnn" then
  123. return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  124. else
  125. error("unsupported backend:" .. backend)
  126. end
  127. end
  128. local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  129. if backend == "cunn" then
  130. return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  131. elseif backend == "cudnn" then
  132. return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  133. else
  134. error("unsupported backend:" .. backend)
  135. end
  136. end
  137. -- VGG style net(7 layers)
  138. function srcnn.vgg_7(backend, ch)
  139. local model = nn.Sequential()
  140. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  141. model:add(nn.LeakyReLU(0.1, true))
  142. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  143. model:add(nn.LeakyReLU(0.1, true))
  144. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  145. model:add(nn.LeakyReLU(0.1, true))
  146. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  147. model:add(nn.LeakyReLU(0.1, true))
  148. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  149. model:add(nn.LeakyReLU(0.1, true))
  150. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  151. model:add(nn.LeakyReLU(0.1, true))
  152. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  153. model:add(w2nn.InplaceClip01())
  154. model:add(nn.View(-1):setNumInputDims(3))
  155. model.w2nn_arch_name = "vgg_7"
  156. model.w2nn_offset = 7
  157. model.w2nn_scale_factor = 1
  158. model.w2nn_channels = ch
  159. --model:cuda()
  160. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  161. return model
  162. end
  163. -- VGG style net(12 layers)
  164. function srcnn.vgg_12(backend, ch)
  165. local model = nn.Sequential()
  166. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  167. model:add(nn.LeakyReLU(0.1, true))
  168. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  169. model:add(nn.LeakyReLU(0.1, true))
  170. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  171. model:add(nn.LeakyReLU(0.1, true))
  172. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  173. model:add(nn.LeakyReLU(0.1, true))
  174. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  175. model:add(nn.LeakyReLU(0.1, true))
  176. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  177. model:add(nn.LeakyReLU(0.1, true))
  178. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  179. model:add(nn.LeakyReLU(0.1, true))
  180. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  181. model:add(nn.LeakyReLU(0.1, true))
  182. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  183. model:add(nn.LeakyReLU(0.1, true))
  184. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  185. model:add(nn.LeakyReLU(0.1, true))
  186. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  187. model:add(nn.LeakyReLU(0.1, true))
  188. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  189. model:add(w2nn.InplaceClip01())
  190. model:add(nn.View(-1):setNumInputDims(3))
  191. model.w2nn_arch_name = "vgg_12"
  192. model.w2nn_offset = 12
  193. model.w2nn_scale_factor = 1
  194. model.w2nn_resize = false
  195. model.w2nn_channels = ch
  196. --model:cuda()
  197. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  198. return model
  199. end
  200. -- Dilated Convolution (7 layers)
  201. function srcnn.dilated_7(backend, ch)
  202. local model = nn.Sequential()
  203. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  204. model:add(nn.LeakyReLU(0.1, true))
  205. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  206. model:add(nn.LeakyReLU(0.1, true))
  207. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  208. model:add(nn.LeakyReLU(0.1, true))
  209. model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  210. model:add(nn.LeakyReLU(0.1, true))
  211. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
  212. model:add(nn.LeakyReLU(0.1, true))
  213. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  214. model:add(nn.LeakyReLU(0.1, true))
  215. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  216. model:add(w2nn.InplaceClip01())
  217. model:add(nn.View(-1):setNumInputDims(3))
  218. model.w2nn_arch_name = "dilated_7"
  219. model.w2nn_offset = 12
  220. model.w2nn_scale_factor = 1
  221. model.w2nn_resize = false
  222. model.w2nn_channels = ch
  223. --model:cuda()
  224. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  225. return model
  226. end
  227. -- Upconvolution
  228. function srcnn.upconv_7(backend, ch)
  229. local model = nn.Sequential()
  230. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  231. model:add(nn.LeakyReLU(0.1, true))
  232. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  233. model:add(nn.LeakyReLU(0.1, true))
  234. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  235. model:add(nn.LeakyReLU(0.1, true))
  236. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  237. model:add(nn.LeakyReLU(0.1, true))
  238. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  239. model:add(nn.LeakyReLU(0.1, true))
  240. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  241. model:add(nn.LeakyReLU(0.1, true))
  242. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  243. model:add(w2nn.InplaceClip01())
  244. model:add(nn.View(-1):setNumInputDims(3))
  245. model.w2nn_arch_name = "upconv_7"
  246. model.w2nn_offset = 14
  247. model.w2nn_scale_factor = 2
  248. model.w2nn_resize = true
  249. model.w2nn_channels = ch
  250. --model:cuda()
  251. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  252. return model
  253. end
  254. -- large version of upconv_7
  255. -- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.
  256. function srcnn.upconv_7l(backend, ch)
  257. local model = nn.Sequential()
  258. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  259. model:add(nn.LeakyReLU(0.1, true))
  260. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  261. model:add(nn.LeakyReLU(0.1, true))
  262. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  263. model:add(nn.LeakyReLU(0.1, true))
  264. model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))
  265. model:add(nn.LeakyReLU(0.1, true))
  266. model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))
  267. model:add(nn.LeakyReLU(0.1, true))
  268. model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))
  269. model:add(nn.LeakyReLU(0.1, true))
  270. model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())
  271. model:add(w2nn.InplaceClip01())
  272. model:add(nn.View(-1):setNumInputDims(3))
  273. model.w2nn_arch_name = "upconv_7l"
  274. model.w2nn_offset = 14
  275. model.w2nn_scale_factor = 2
  276. model.w2nn_resize = true
  277. model.w2nn_channels = ch
  278. --model:cuda()
  279. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  280. return model
  281. end
  282. -- layerwise linear blending with skip connections
  283. -- Note: PSNR: upconv_7 < skiplb_7 < upconv_7l
  284. function srcnn.skiplb_7(backend, ch)
  285. local function skip(backend, i, o)
  286. local con = nn.Concat(2)
  287. local conv = nn.Sequential()
  288. conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
  289. conv:add(nn.LeakyReLU(0.1, true))
  290. -- depth concat
  291. con:add(conv)
  292. con:add(nn.Identify()) -- skip
  293. return con
  294. end
  295. local model = nn.Sequential()
  296. model:add(skip(backend, ch, 16))
  297. model:add(skip(backend, 16+ch, 32))
  298. model:add(skip(backend, 32+16+ch, 64))
  299. model:add(skip(backend, 64+32+16+ch, 128))
  300. model:add(skip(backend, 128+64+32+16+ch, 128))
  301. model:add(skip(backend, 128+128+64+32+16+ch, 256))
  302. -- input of last layer = [all layerwise output(contains input layer)].flatten
  303. model:add(SpatialFullConvolution(backend, 256+128+128+64+32+16+ch, ch, 4, 4, 2, 2, 3, 3):noBias()) -- linear blend
  304. model:add(w2nn.InplaceClip01())
  305. model:add(nn.View(-1):setNumInputDims(3))
  306. model.w2nn_arch_name = "skiplb_7"
  307. model.w2nn_offset = 14
  308. model.w2nn_scale_factor = 2
  309. model.w2nn_resize = true
  310. model.w2nn_channels = ch
  311. --model:cuda()
  312. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  313. return model
  314. end
  315. -- dilated convolution + deconvolution
  316. -- Note: This model is not better than upconv_7. Maybe becuase of under-fitting.
  317. function srcnn.dilated_upconv_7(backend, ch)
  318. local model = nn.Sequential()
  319. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  320. model:add(nn.LeakyReLU(0.1, true))
  321. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  322. model:add(nn.LeakyReLU(0.1, true))
  323. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  324. model:add(nn.LeakyReLU(0.1, true))
  325. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 2, 2))
  326. model:add(nn.LeakyReLU(0.1, true))
  327. model:add(nn.SpatialDilatedConvolution(128, 128, 3, 3, 1, 1, 0, 0, 2, 2))
  328. model:add(nn.LeakyReLU(0.1, true))
  329. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  330. model:add(nn.LeakyReLU(0.1, true))
  331. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  332. model:add(w2nn.InplaceClip01())
  333. --model:add(nn.View(-1):setNumInputDims(3))
  334. model.w2nn_arch_name = "dilated_upconv_7"
  335. model.w2nn_offset = 20
  336. model.w2nn_scale_factor = 2
  337. model.w2nn_resize = true
  338. model.w2nn_channels = ch
  339. --model:cuda()
  340. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  341. return model
  342. end
  343. function srcnn.create(model_name, backend, color)
  344. model_name = model_name or "vgg_7"
  345. backend = backend or "cunn"
  346. color = color or "rgb"
  347. local ch = 3
  348. if color == "rgb" then
  349. ch = 3
  350. elseif color == "y" then
  351. ch = 1
  352. else
  353. error("unsupported color: " .. color)
  354. end
  355. if srcnn[model_name] then
  356. local model = srcnn[model_name](backend, ch)
  357. assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
  358. return model
  359. else
  360. error("unsupported model_name: " .. model_name)
  361. end
  362. end
  363. --[[
  364. local model = srcnn.upconv_7l("cunn", 3):cuda()
  365. print(model)
  366. print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
  367. --]]
  368. return srcnn