|
@@ -30,63 +30,132 @@ end
|
|
|
function srcnn.channels(model)
|
|
|
return model:get(model:size() - 1).weight:size(1)
|
|
|
end
|
|
|
-function srcnn.waifu2x_cunn(ch)
|
|
|
+function srcnn.backend(model)
|
|
|
+ local conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
+ if #conv > 0 then
|
|
|
+ return "cudnn"
|
|
|
+ else
|
|
|
+ return "cunn"
|
|
|
+ end
|
|
|
+end
|
|
|
+function srcnn.color(model)
|
|
|
+ local ch = srcnn.channels(model)
|
|
|
+ if ch == 3 then
|
|
|
+ return "rgb"
|
|
|
+ else
|
|
|
+ return "y"
|
|
|
+ end
|
|
|
+end
|
|
|
+function srcnn.name(model)
|
|
|
+ local backend_cudnn = false
|
|
|
+ local conv = model:findModules("nn.SpatialConvolutionMM")
|
|
|
+ if #conv == 0 then
|
|
|
+ backend_cudnn = true
|
|
|
+ conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
+ end
|
|
|
+ if #conv == 7 then
|
|
|
+ return "vgg_7"
|
|
|
+ elseif #conv == 12 then
|
|
|
+ return "vgg_12"
|
|
|
+ else
|
|
|
+ return nil
|
|
|
+ end
|
|
|
+end
|
|
|
+function srcnn.offset_size(model)
|
|
|
+ local conv = model:findModules("nn.SpatialConvolutionMM")
|
|
|
+ if #conv == 0 then
|
|
|
+ conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
+ end
|
|
|
+ local offset = 0
|
|
|
+ for i = 1, #conv do
|
|
|
+ offset = offset + (conv[i].kW - 1) / 2
|
|
|
+ end
|
|
|
+ return math.floor(offset)
|
|
|
+end
|
|
|
+
|
|
|
+local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ if backend == "cunn" then
|
|
|
+ return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ elseif backend == "cudnn" then
|
|
|
+ return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ else
|
|
|
+ error("unsupported backend:" .. backend)
|
|
|
+ end
|
|
|
+end
|
|
|
+
|
|
|
+-- VGG style net(7 layers)
|
|
|
+function srcnn.vgg_7(backend, ch)
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(nn.SpatialConvolutionMM(ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(nn.SpatialConvolutionMM(32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(nn.SpatialConvolutionMM(64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(nn.SpatialConvolutionMM(128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
|
--model:cuda()
|
|
|
--print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
-function srcnn.waifu2x_cudnn(ch)
|
|
|
+-- VGG style net(12 layers)
|
|
|
+function srcnn.vgg_12(backend, ch)
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(cudnn.SpatialConvolution(ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(cudnn.SpatialConvolution(32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(cudnn.SpatialConvolution(32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(cudnn.SpatialConvolution(64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(cudnn.SpatialConvolution(64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(cudnn.SpatialConvolution(128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
- model:add(cudnn.SpatialConvolution(128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
|
--model:cuda()
|
|
|
--print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
+
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
+ model_name = model_name or "vgg_7"
|
|
|
+ backend = backend or "cunn"
|
|
|
+ color = color or "rgb"
|
|
|
local ch = 3
|
|
|
if color == "rgb" then
|
|
|
ch = 3
|
|
|
elseif color == "y" then
|
|
|
ch = 1
|
|
|
else
|
|
|
- error("unsupported color: " + color)
|
|
|
+ error("unsupported color: " .. color)
|
|
|
end
|
|
|
- if backend == "cunn" then
|
|
|
- return srcnn.waifu2x_cunn(ch)
|
|
|
- elseif backend == "cudnn" then
|
|
|
- return srcnn.waifu2x_cudnn(ch)
|
|
|
+ if model_name == "vgg_7" then
|
|
|
+ return srcnn.vgg_7(backend, ch)
|
|
|
+ elseif model_name == "vgg_12" then
|
|
|
+ return srcnn.vgg_12(backend, ch)
|
|
|
else
|
|
|
- error("unsupported backend: " + backend)
|
|
|
+ error("unsupported model_name: " .. model_name)
|
|
|
end
|
|
|
end
|
|
|
return srcnn
|