123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- require 'w2nn'
- -- ref: http://arxiv.org/abs/1502.01852
- -- ref: http://arxiv.org/abs/1501.00092
- local srcnn = {}
- function nn.SpatialConvolutionMM:reset(stdv)
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
- self.weight:normal(0, stdv)
- self.bias:zero()
- end
- if cudnn and cudnn.SpatialConvolution then
- function cudnn.SpatialConvolution:reset(stdv)
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
- self.weight:normal(0, stdv)
- self.bias:zero()
- end
- end
- function nn.SpatialConvolutionMM:clearState()
- if self.gradWeight then
- self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
- end
- if self.gradBias then
- self.gradBias:resize(self.nOutputPlane):zero()
- end
- return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
- end
- function srcnn.channels(model)
- return model:get(model:size() - 1).weight:size(1)
- end
- function srcnn.backend(model)
- local conv = model:findModules("cudnn.SpatialConvolution")
- if #conv > 0 then
- return "cudnn"
- else
- return "cunn"
- end
- end
- function srcnn.color(model)
- local ch = srcnn.channels(model)
- if ch == 3 then
- return "rgb"
- else
- return "y"
- end
- end
- function srcnn.name(model)
- local backend_cudnn = false
- local conv = model:findModules("nn.SpatialConvolutionMM")
- if #conv == 0 then
- backend_cudnn = true
- conv = model:findModules("cudnn.SpatialConvolution")
- end
- if #conv == 7 then
- return "vgg_7"
- elseif #conv == 12 then
- return "vgg_12"
- else
- return nil
- end
- end
- function srcnn.offset_size(model)
- local conv = model:findModules("nn.SpatialConvolutionMM")
- if #conv == 0 then
- conv = model:findModules("cudnn.SpatialConvolution")
- end
- local offset = 0
- for i = 1, #conv do
- offset = offset + (conv[i].kW - 1) / 2
- end
- return math.floor(offset)
- end
- local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- if backend == "cunn" then
- return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- elseif backend == "cudnn" then
- return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
- else
- error("unsupported backend:" .. backend)
- end
- end
- -- VGG style net(7 layers)
- function srcnn.vgg_7(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
- model:add(nn.View(-1):setNumInputDims(3))
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- -- VGG style net(12 layers)
- function srcnn.vgg_12(backend, ch)
- local model = nn.Sequential()
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
- model:add(nn.View(-1):setNumInputDims(3))
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- function srcnn.create(model_name, backend, color)
- model_name = model_name or "vgg_7"
- backend = backend or "cunn"
- color = color or "rgb"
- local ch = 3
- if color == "rgb" then
- ch = 3
- elseif color == "y" then
- ch = 1
- else
- error("unsupported color: " .. color)
- end
- if model_name == "vgg_7" then
- return srcnn.vgg_7(backend, ch)
- elseif model_name == "vgg_12" then
- return srcnn.vgg_12(backend, ch)
- else
- error("unsupported model_name: " .. model_name)
- end
- end
- return srcnn
|