|
@@ -9,14 +9,23 @@ function nn.SpatialConvolutionMM:reset(stdv)
|
|
|
self.weight:normal(0, stdv)
|
|
|
self.bias:zero()
|
|
|
end
|
|
|
+function nn.SpatialFullConvolution:reset(stdv)
|
|
|
+ stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
+ self.weight:normal(0, stdv)
|
|
|
+ self.bias:zero()
|
|
|
+end
|
|
|
if cudnn and cudnn.SpatialConvolution then
|
|
|
function cudnn.SpatialConvolution:reset(stdv)
|
|
|
stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
self.weight:normal(0, stdv)
|
|
|
self.bias:zero()
|
|
|
end
|
|
|
+ function cudnn.SpatialFullConvolution:reset(stdv)
|
|
|
+ stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
+ self.weight:normal(0, stdv)
|
|
|
+ self.bias:zero()
|
|
|
+ end
|
|
|
end
|
|
|
-
|
|
|
function nn.SpatialConvolutionMM:clearState()
|
|
|
if self.gradWeight then
|
|
|
self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
|
|
@@ -26,9 +35,12 @@ function nn.SpatialConvolutionMM:clearState()
|
|
|
end
|
|
|
return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
|
|
|
end
|
|
|
-
|
|
|
function srcnn.channels(model)
|
|
|
- return model:get(model:size() - 1).weight:size(1)
|
|
|
+ if model.w2nn_channels ~= nil then
|
|
|
+ return model.w2nn_channels
|
|
|
+ else
|
|
|
+ return model:get(model:size() - 1).weight:size(1)
|
|
|
+ end
|
|
|
end
|
|
|
function srcnn.backend(model)
|
|
|
local conv = model:findModules("cudnn.SpatialConvolution")
|
|
@@ -47,32 +59,54 @@ function srcnn.color(model)
|
|
|
end
|
|
|
end
|
|
|
function srcnn.name(model)
|
|
|
- local backend_cudnn = false
|
|
|
- local conv = model:findModules("nn.SpatialConvolutionMM")
|
|
|
- if #conv == 0 then
|
|
|
- backend_cudnn = true
|
|
|
- conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
- end
|
|
|
- if #conv == 7 then
|
|
|
- return "vgg_7"
|
|
|
- elseif #conv == 12 then
|
|
|
- return "vgg_12"
|
|
|
+ if model.w2nn_arch_name then
|
|
|
+ return model.w2nn_arch_name
|
|
|
else
|
|
|
- return nil
|
|
|
+ local conv = model:findModules("nn.SpatialConvolutionMM")
|
|
|
+ if #conv == 0 then
|
|
|
+ conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
+ end
|
|
|
+ if #conv == 7 then
|
|
|
+ return "vgg_7"
|
|
|
+ elseif #conv == 12 then
|
|
|
+ return "vgg_12"
|
|
|
+ else
|
|
|
+ error("unsupported model name")
|
|
|
+ end
|
|
|
end
|
|
|
end
|
|
|
function srcnn.offset_size(model)
|
|
|
- local conv = model:findModules("nn.SpatialConvolutionMM")
|
|
|
- if #conv == 0 then
|
|
|
- conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
+ if model.w2nn_offset ~= nil then
|
|
|
+ return model.w2nn_offset
|
|
|
+ else
|
|
|
+ local name = srcnn.name(model)
|
|
|
+ if name:match("vgg_") then
|
|
|
+ local conv = model:findModules("nn.SpatialConvolutionMM")
|
|
|
+ if #conv == 0 then
|
|
|
+ conv = model:findModules("cudnn.SpatialConvolution")
|
|
|
+ end
|
|
|
+ local offset = 0
|
|
|
+ for i = 1, #conv do
|
|
|
+ offset = offset + (conv[i].kW - 1) / 2
|
|
|
+ end
|
|
|
+ return math.floor(offset)
|
|
|
+ else
|
|
|
+ error("unsupported model name")
|
|
|
+ end
|
|
|
end
|
|
|
- local offset = 0
|
|
|
- for i = 1, #conv do
|
|
|
- offset = offset + (conv[i].kW - 1) / 2
|
|
|
+end
|
|
|
+function srcnn.has_resize(model)
|
|
|
+ if model.w2nn_resize ~= nil then
|
|
|
+ return model.w2nn_resize
|
|
|
+ else
|
|
|
+ local name = srcnn.name(model)
|
|
|
+ if name:match("upconv") ~= nil then
|
|
|
+ return true
|
|
|
+ else
|
|
|
+ return false
|
|
|
+ end
|
|
|
end
|
|
|
- return math.floor(offset)
|
|
|
end
|
|
|
-
|
|
|
local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
if backend == "cunn" then
|
|
|
return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
@@ -82,6 +116,15 @@ local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW
|
|
|
error("unsupported backend:" .. backend)
|
|
|
end
|
|
|
end
|
|
|
+local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ if backend == "cunn" then
|
|
|
+ return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ elseif backend == "cudnn" then
|
|
|
+ return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ else
|
|
|
+ error("unsupported backend:" .. backend)
|
|
|
+ end
|
|
|
+end
|
|
|
|
|
|
-- VGG style net(7 layers)
|
|
|
function srcnn.vgg_7(backend, ch)
|
|
@@ -100,6 +143,11 @@ function srcnn.vgg_7(backend, ch)
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "vgg_7"
|
|
|
+ model.w2nn_offset = 7
|
|
|
+ model.w2nn_resize = false
|
|
|
+ model.w2nn_channels = ch
|
|
|
--model:cuda()
|
|
|
--print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
|
|
@@ -132,12 +180,103 @@ function srcnn.vgg_12(backend, ch)
|
|
|
model:add(w2nn.LeakyReLU(0.1))
|
|
|
model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "vgg_12"
|
|
|
+ model.w2nn_offset = 12
|
|
|
+ model.w2nn_resize = false
|
|
|
+ model.w2nn_channels = ch
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+
|
|
|
+-- Dilated Convolution (7 layers)
|
|
|
+function srcnn.dilated_7(backend, ch)
|
|
|
+ local model = nn.Sequential()
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "dilated_7"
|
|
|
+ model.w2nn_offset = 12
|
|
|
+ model.w2nn_resize = false
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
--model:cuda()
|
|
|
--print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
+-- Up Convolution
|
|
|
+function srcnn.upconv_7(backend, ch)
|
|
|
+ local model = nn.Sequential()
|
|
|
+
|
|
|
+ model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialFullConvolution(backend, 128, ch, 4, 4, 2, 2, 1, 1))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upconv_7"
|
|
|
+ model.w2nn_offset = 12
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
+function srcnn.upconv_8_4x(backend, ch)
|
|
|
+ local model = nn.Sequential()
|
|
|
+
|
|
|
+ model:add(SpatialFullConvolution(backend, ch, 32, 4, 4, 2, 2, 1, 1))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(w2nn.LeakyReLU(0.1))
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, 3, 4, 4, 2, 2, 1, 1))
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upconv_8_4x"
|
|
|
+ model.w2nn_offset = 12
|
|
|
+ model.w2nn_resize = true
|
|
|
+ model.w2nn_channels = ch
|
|
|
+
|
|
|
+ --model:cuda()
|
|
|
+ --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
+
|
|
|
+ return model
|
|
|
+end
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
model_name = model_name or "vgg_7"
|
|
|
backend = backend or "cunn"
|
|
@@ -150,12 +289,14 @@ function srcnn.create(model_name, backend, color)
|
|
|
else
|
|
|
error("unsupported color: " .. color)
|
|
|
end
|
|
|
- if model_name == "vgg_7" then
|
|
|
- return srcnn.vgg_7(backend, ch)
|
|
|
- elseif model_name == "vgg_12" then
|
|
|
- return srcnn.vgg_12(backend, ch)
|
|
|
+ if srcnn[model_name] then
|
|
|
+ return srcnn[model_name](backend, ch)
|
|
|
else
|
|
|
error("unsupported model_name: " .. model_name)
|
|
|
end
|
|
|
end
|
|
|
+
|
|
|
+--local model = srcnn.upconv_8_4x("cunn", 3):cuda()
|
|
|
+--print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
+
|
|
|
return srcnn
|