pairwise_transform_jpeg.lua 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. local pairwise_utils = require 'pairwise_transform_utils'
  2. local gm = require 'graphicsmagick'
  3. local iproc = require 'iproc'
  4. local pairwise_transform = {}
  5. function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
  6. local unstable_region_offset = 8
  7. local y = pairwise_utils.preprocess(src, size, options)
  8. local x = y
  9. for i = 1, #quality do
  10. x = gm.Image(x, "RGB", "DHW")
  11. x:format("jpeg"):depth(8)
  12. if torch.uniform() < options.jpeg_chroma_subsampling_rate then
  13. -- YUV 420
  14. x:samplingFactors({2.0, 1.0, 1.0})
  15. else
  16. -- YUV 444
  17. x:samplingFactors({1.0, 1.0, 1.0})
  18. end
  19. local blob, len = x:toBlob(quality[i])
  20. x:fromBlob(blob, len)
  21. x = x:toTensor("byte", "RGB", "DHW")
  22. end
  23. x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
  24. x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
  25. y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
  26. y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
  27. assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
  28. assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
  29. local batch = {}
  30. for i = 1, n do
  31. local xc, yc = pairwise_utils.active_cropping(x, y, size, 1,
  32. options.active_cropping_rate,
  33. options.active_cropping_tries)
  34. xc = iproc.byte2float(xc)
  35. yc = iproc.byte2float(yc)
  36. if options.rgb then
  37. else
  38. yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
  39. xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
  40. end
  41. if torch.uniform() < options.nr_rate then
  42. -- reducing noise
  43. table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  44. else
  45. -- ratain useful details
  46. table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  47. end
  48. end
  49. return batch
  50. end
  51. function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
  52. if style == "art" then
  53. if level == 1 then
  54. return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
  55. size, offset, n, options)
  56. elseif level == 2 or level == 3 then
  57. -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
  58. local r = torch.uniform()
  59. if r > 0.6 then
  60. return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
  61. size, offset, n, options)
  62. elseif r > 0.3 then
  63. local quality1 = torch.random(37, 70)
  64. local quality2 = quality1 - torch.random(5, 10)
  65. return pairwise_transform.jpeg_(src, {quality1, quality2},
  66. size, offset, n, options)
  67. else
  68. local quality1 = torch.random(52, 70)
  69. local quality2 = quality1 - torch.random(5, 15)
  70. local quality3 = quality1 - torch.random(15, 25)
  71. return pairwise_transform.jpeg_(src,
  72. {quality1, quality2, quality3},
  73. size, offset, n, options)
  74. end
  75. else
  76. error("unknown noise level: " .. level)
  77. end
  78. elseif style == "photo" then
  79. -- level adjusting by -nr_rate
  80. return pairwise_transform.jpeg_(src, {torch.random(30, 70)},
  81. size, offset, n,
  82. options)
  83. else
  84. error("unknown style: " .. style)
  85. end
  86. end
  87. function pairwise_transform.test_jpeg(src)
  88. torch.setdefaulttensortype("torch.FloatTensor")
  89. local options = {random_color_noise_rate = 0.5,
  90. random_half_rate = 0.5,
  91. random_overlay_rate = 0.5,
  92. random_unsharp_mask_rate = 0.5,
  93. jpeg_chroma_subsampling_rate = 0.5,
  94. nr_rate = 1.0,
  95. active_cropping_rate = 0.5,
  96. active_cropping_tries = 10,
  97. max_size = 256,
  98. rgb = true
  99. }
  100. local image = require 'image'
  101. local src = image.lena()
  102. for i = 1, 9 do
  103. local xy = pairwise_transform.jpeg(src,
  104. "art",
  105. torch.random(1, 2),
  106. 128, 7, 1, options)
  107. image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
  108. image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
  109. end
  110. end
  111. return pairwise_transform