|
@@ -5,23 +5,31 @@ require 'w2nn'
|
|
|
local srcnn = {}
|
|
|
|
|
|
function nn.SpatialConvolutionMM:reset(stdv)
|
|
|
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
+ local fin = self.kW * self.kH * self.nInputPlane
|
|
|
+ local fout = self.kW * self.kH * self.nOutputPlane
|
|
|
+ stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
|
|
|
self.weight:normal(0, stdv)
|
|
|
self.bias:zero()
|
|
|
end
|
|
|
function nn.SpatialFullConvolution:reset(stdv)
|
|
|
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
+ local fin = self.kW * self.kH * self.nInputPlane
|
|
|
+ local fout = self.kW * self.kH * self.nOutputPlane
|
|
|
+ stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
|
|
|
self.weight:normal(0, stdv)
|
|
|
self.bias:zero()
|
|
|
end
|
|
|
if cudnn and cudnn.SpatialConvolution then
|
|
|
function cudnn.SpatialConvolution:reset(stdv)
|
|
|
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
+ local fin = self.kW * self.kH * self.nInputPlane
|
|
|
+ local fout = self.kW * self.kH * self.nOutputPlane
|
|
|
+ stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
|
|
|
self.weight:normal(0, stdv)
|
|
|
self.bias:zero()
|
|
|
end
|
|
|
function cudnn.SpatialFullConvolution:reset(stdv)
|
|
|
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
|
|
|
+ local fin = self.kW * self.kH * self.nInputPlane
|
|
|
+ local fout = self.kW * self.kH * self.nOutputPlane
|
|
|
+ stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
|
|
|
self.weight:normal(0, stdv)
|
|
|
self.bias:zero()
|
|
|
end
|
|
@@ -119,9 +127,9 @@ local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW
|
|
|
error("unsupported backend:" .. backend)
|
|
|
end
|
|
|
end
|
|
|
-local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
|
|
|
if backend == "cunn" then
|
|
|
- return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
+ return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
|
|
|
elseif backend == "cudnn" then
|
|
|
return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
|
|
|
else
|
|
@@ -225,26 +233,26 @@ function srcnn.dilated_7(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- Up Convolution
|
|
|
+-- Upconvolution
|
|
|
function srcnn.upconv_7(backend, ch)
|
|
|
local model = nn.Sequential()
|
|
|
-
|
|
|
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 128, ch, 4, 4, 2, 2, 1, 1))
|
|
|
+ model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(nn.LeakyReLU(0.1, true))
|
|
|
+ model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ model:add(nn.View(-1):setNumInputDims(3))
|
|
|
|
|
|
model.w2nn_arch_name = "upconv_7"
|
|
|
- model.w2nn_offset = 12
|
|
|
+ model.w2nn_offset = 14
|
|
|
model.w2nn_scale_factor = 2
|
|
|
model.w2nn_resize = true
|
|
|
model.w2nn_channels = ch
|
|
@@ -254,36 +262,6 @@ function srcnn.upconv_7(backend, ch)
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
-function srcnn.upconv_8_4x(backend, ch)
|
|
|
- local model = nn.Sequential()
|
|
|
-
|
|
|
- model:add(SpatialFullConvolution(backend, ch, 32, 4, 4, 2, 2, 1, 1))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 64, 3, 4, 4, 2, 2, 1, 1))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "upconv_8_4x"
|
|
|
- model.w2nn_offset = 12
|
|
|
- model.w2nn_scale_factor = 4
|
|
|
- model.w2nn_resize = true
|
|
|
- model.w2nn_channels = ch
|
|
|
-
|
|
|
- --model:cuda()
|
|
|
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
model_name = model_name or "vgg_7"
|
|
|
backend = backend or "cunn"
|
|
@@ -298,14 +276,14 @@ function srcnn.create(model_name, backend, color)
|
|
|
end
|
|
|
if srcnn[model_name] then
|
|
|
local model = srcnn[model_name](backend, ch)
|
|
|
- assert(model.w2nn_offset == (model.w2nn_offset / model.w2nn_scale_factor) * model.w2nn_scale_factor)
|
|
|
+ assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
|
|
|
return model
|
|
|
else
|
|
|
error("unsupported model_name: " .. model_name)
|
|
|
end
|
|
|
end
|
|
|
|
|
|
---local model = srcnn.upconv_8_4x("cunn", 3):cuda()
|
|
|
+--local model = srcnn.upconv_6("cunn", 3):cuda()
|
|
|
--print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
|
|
|
return srcnn
|