srcnn.lua 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. require 'w2nn'
  2. -- ref: http://arxiv.org/abs/1502.01852
  3. -- ref: http://arxiv.org/abs/1501.00092
  4. local srcnn = {}
  5. function nn.SpatialConvolutionMM:reset(stdv)
  6. local fin = self.kW * self.kH * self.nInputPlane
  7. local fout = self.kW * self.kH * self.nOutputPlane
  8. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  9. self.weight:normal(0, stdv)
  10. self.bias:zero()
  11. end
  12. function nn.SpatialFullConvolution:reset(stdv)
  13. local fin = self.kW * self.kH * self.nInputPlane
  14. local fout = self.kW * self.kH * self.nOutputPlane
  15. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  16. self.weight:normal(0, stdv)
  17. self.bias:zero()
  18. end
  19. if cudnn and cudnn.SpatialConvolution then
  20. function cudnn.SpatialConvolution:reset(stdv)
  21. local fin = self.kW * self.kH * self.nInputPlane
  22. local fout = self.kW * self.kH * self.nOutputPlane
  23. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  24. self.weight:normal(0, stdv)
  25. self.bias:zero()
  26. end
  27. function cudnn.SpatialFullConvolution:reset(stdv)
  28. local fin = self.kW * self.kH * self.nInputPlane
  29. local fout = self.kW * self.kH * self.nOutputPlane
  30. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  31. self.weight:normal(0, stdv)
  32. self.bias:zero()
  33. end
  34. end
  35. function nn.SpatialConvolutionMM:clearState()
  36. if self.gradWeight then
  37. self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
  38. end
  39. if self.gradBias then
  40. self.gradBias:resize(self.nOutputPlane):zero()
  41. end
  42. return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
  43. end
  44. function srcnn.channels(model)
  45. if model.w2nn_channels ~= nil then
  46. return model.w2nn_channels
  47. else
  48. return model:get(model:size() - 1).weight:size(1)
  49. end
  50. end
  51. function srcnn.backend(model)
  52. local conv = model:findModules("cudnn.SpatialConvolution")
  53. local fullconv = model:findModules("cudnn.SpatialFullConvolution")
  54. if #conv > 0 or #fullconv > 0 then
  55. return "cudnn"
  56. else
  57. return "cunn"
  58. end
  59. end
  60. function srcnn.color(model)
  61. local ch = srcnn.channels(model)
  62. if ch == 3 then
  63. return "rgb"
  64. else
  65. return "y"
  66. end
  67. end
  68. function srcnn.name(model)
  69. if model.w2nn_arch_name ~= nil then
  70. return model.w2nn_arch_name
  71. else
  72. local conv = model:findModules("nn.SpatialConvolutionMM")
  73. if #conv == 0 then
  74. conv = model:findModules("cudnn.SpatialConvolution")
  75. end
  76. if #conv == 7 then
  77. return "vgg_7"
  78. elseif #conv == 12 then
  79. return "vgg_12"
  80. else
  81. error("unsupported model")
  82. end
  83. end
  84. end
  85. function srcnn.offset_size(model)
  86. if model.w2nn_offset ~= nil then
  87. return model.w2nn_offset
  88. else
  89. local name = srcnn.name(model)
  90. if name:match("vgg_") then
  91. local conv = model:findModules("nn.SpatialConvolutionMM")
  92. if #conv == 0 then
  93. conv = model:findModules("cudnn.SpatialConvolution")
  94. end
  95. local offset = 0
  96. for i = 1, #conv do
  97. offset = offset + (conv[i].kW - 1) / 2
  98. end
  99. return math.floor(offset)
  100. else
  101. error("unsupported model")
  102. end
  103. end
  104. end
  105. function srcnn.scale_factor(model)
  106. if model.w2nn_scale_factor ~= nil then
  107. return model.w2nn_scale_factor
  108. else
  109. local name = srcnn.name(model)
  110. if name == "upconv_7" then
  111. return 2
  112. elseif name == "upconv_8_4x" then
  113. return 4
  114. else
  115. return 1
  116. end
  117. end
  118. end
  119. local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  120. if backend == "cunn" then
  121. return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  122. elseif backend == "cudnn" then
  123. return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  124. else
  125. error("unsupported backend:" .. backend)
  126. end
  127. end
  128. local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  129. if backend == "cunn" then
  130. return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  131. elseif backend == "cudnn" then
  132. return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  133. else
  134. error("unsupported backend:" .. backend)
  135. end
  136. end
  137. -- VGG style net(7 layers)
  138. function srcnn.vgg_7(backend, ch)
  139. local model = nn.Sequential()
  140. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  141. model:add(nn.LeakyReLU(0.1, true))
  142. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  143. model:add(nn.LeakyReLU(0.1, true))
  144. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  145. model:add(nn.LeakyReLU(0.1, true))
  146. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  147. model:add(nn.LeakyReLU(0.1, true))
  148. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  149. model:add(nn.LeakyReLU(0.1, true))
  150. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  151. model:add(nn.LeakyReLU(0.1, true))
  152. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  153. model:add(nn.View(-1):setNumInputDims(3))
  154. model.w2nn_arch_name = "vgg_7"
  155. model.w2nn_offset = 7
  156. model.w2nn_scale_factor = 1
  157. model.w2nn_channels = ch
  158. --model:cuda()
  159. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  160. return model
  161. end
  162. -- VGG style net(12 layers)
  163. function srcnn.vgg_12(backend, ch)
  164. local model = nn.Sequential()
  165. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  166. model:add(nn.LeakyReLU(0.1, true))
  167. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  168. model:add(nn.LeakyReLU(0.1, true))
  169. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  170. model:add(nn.LeakyReLU(0.1, true))
  171. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  172. model:add(nn.LeakyReLU(0.1, true))
  173. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  174. model:add(nn.LeakyReLU(0.1, true))
  175. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  176. model:add(nn.LeakyReLU(0.1, true))
  177. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  178. model:add(nn.LeakyReLU(0.1, true))
  179. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  180. model:add(nn.LeakyReLU(0.1, true))
  181. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  182. model:add(nn.LeakyReLU(0.1, true))
  183. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  184. model:add(nn.LeakyReLU(0.1, true))
  185. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  186. model:add(nn.LeakyReLU(0.1, true))
  187. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  188. model:add(nn.View(-1):setNumInputDims(3))
  189. model.w2nn_arch_name = "vgg_12"
  190. model.w2nn_offset = 12
  191. model.w2nn_scale_factor = 1
  192. model.w2nn_resize = false
  193. model.w2nn_channels = ch
  194. --model:cuda()
  195. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  196. return model
  197. end
  198. -- Dilated Convolution (7 layers)
  199. function srcnn.dilated_7(backend, ch)
  200. local model = nn.Sequential()
  201. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  202. model:add(nn.LeakyReLU(0.1, true))
  203. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  204. model:add(nn.LeakyReLU(0.1, true))
  205. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  206. model:add(nn.LeakyReLU(0.1, true))
  207. model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  208. model:add(nn.LeakyReLU(0.1, true))
  209. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
  210. model:add(nn.LeakyReLU(0.1, true))
  211. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  212. model:add(nn.LeakyReLU(0.1, true))
  213. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  214. model:add(nn.View(-1):setNumInputDims(3))
  215. model.w2nn_arch_name = "dilated_7"
  216. model.w2nn_offset = 12
  217. model.w2nn_scale_factor = 1
  218. model.w2nn_resize = false
  219. model.w2nn_channels = ch
  220. --model:cuda()
  221. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  222. return model
  223. end
  224. -- Upconvolution
  225. function srcnn.upconv_7(backend, ch)
  226. local model = nn.Sequential()
  227. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  228. model:add(nn.LeakyReLU(0.1, true))
  229. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  230. model:add(nn.LeakyReLU(0.1, true))
  231. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  232. model:add(nn.LeakyReLU(0.1, true))
  233. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  234. model:add(nn.LeakyReLU(0.1, true))
  235. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  236. model:add(nn.LeakyReLU(0.1, true))
  237. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  238. model:add(nn.LeakyReLU(0.1, true))
  239. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3))
  240. model:add(nn.View(-1):setNumInputDims(3))
  241. model.w2nn_arch_name = "upconv_7"
  242. model.w2nn_offset = 14
  243. model.w2nn_scale_factor = 2
  244. model.w2nn_resize = true
  245. model.w2nn_channels = ch
  246. --model:cuda()
  247. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  248. return model
  249. end
  250. function srcnn.create(model_name, backend, color)
  251. model_name = model_name or "vgg_7"
  252. backend = backend or "cunn"
  253. color = color or "rgb"
  254. local ch = 3
  255. if color == "rgb" then
  256. ch = 3
  257. elseif color == "y" then
  258. ch = 1
  259. else
  260. error("unsupported color: " .. color)
  261. end
  262. if srcnn[model_name] then
  263. local model = srcnn[model_name](backend, ch)
  264. assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
  265. return model
  266. else
  267. error("unsupported model_name: " .. model_name)
  268. end
  269. end
  270. --local model = srcnn.upconv_6("cunn", 3):cuda()
  271. --print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
  272. return srcnn