|
@@ -0,0 +1,67 @@
|
|
|
+-- SSIM Index, ref: http://www.cns.nyu.edu/~lcv/ssim/ssim_index.m
|
|
|
+local SSIMCriterion, parent = torch.class('w2nn.SSIMCriterion','nn.Criterion')
|
|
|
+function SSIMCriterion:__init(ch, kernel_size, sigma)
|
|
|
+ parent.__init(self)
|
|
|
+ local function gaussian2d(kernel_size, sigma)
|
|
|
+ sigma = sigma or 1
|
|
|
+ local kernel = torch.Tensor(kernel_size, kernel_size)
|
|
|
+ local u = math.floor(kernel_size / 2) + 1
|
|
|
+ local amp = (1 / math.sqrt(2 * math.pi * sigma^2))
|
|
|
+ for x = 1, kernel_size do
|
|
|
+ for y = 1, kernel_size do
|
|
|
+ kernel[x][y] = amp * math.exp(-((x - u)^2 + (y - u)^2) / (2 * sigma^2))
|
|
|
+ end
|
|
|
+ end
|
|
|
+ kernel:div(kernel:sum())
|
|
|
+ return kernel
|
|
|
+ end
|
|
|
+ ch = ch or 1
|
|
|
+ kernel_size = kernel_size or 11
|
|
|
+ sigma = sigma or 1.5
|
|
|
+ local kernel = gaussian2d(kernel_size, sigma)
|
|
|
+ if ch > 1 then
|
|
|
+ local kernel_nd = torch.Tensor(ch, ch, kernel_size, kernel_size)
|
|
|
+ for i = 1, ch do
|
|
|
+ for j = 1, ch do
|
|
|
+ kernel_nd[i][j]:copy(kernel)
|
|
|
+ if i ~= j then
|
|
|
+ kernel_nd[i][j]:zero()
|
|
|
+ end
|
|
|
+ end
|
|
|
+ end
|
|
|
+ kernel = kernel_nd
|
|
|
+ end
|
|
|
+ self.c1 = 0.01^2
|
|
|
+ self.c2 = 0.03^2
|
|
|
+ self.ch = ch
|
|
|
+ self.conv = nn.SpatialConvolution(ch, ch, kernel_size, kernel_size, 1, 1, 0, 0):noBias()
|
|
|
+ self.conv.weight:copy(kernel)
|
|
|
+ self.mu1 = torch.Tensor()
|
|
|
+ self.mu2 = torch.Tensor()
|
|
|
+ self.mu1_sq = torch.Tensor()
|
|
|
+ self.mu2_sq = torch.Tensor()
|
|
|
+ self.mu1_mu2 = torch.Tensor()
|
|
|
+ self.sigma1_sq = torch.Tensor()
|
|
|
+ self.sigma2_sq = torch.Tensor()
|
|
|
+ self.sigma12 = torch.Tensor()
|
|
|
+ self.ssim_map = torch.Tensor()
|
|
|
+end
|
|
|
+function SSIMCriterion:updateOutput(input, target)-- dynamic range: 0-1
|
|
|
+ assert(input:nElement() == target:nElement())
|
|
|
+ local valid = self.conv:forward(input)
|
|
|
+ self.mu1:resizeAs(valid):copy(valid)
|
|
|
+ self.mu2:resizeAs(valid):copy(self.conv:forward(target))
|
|
|
+ self.mu1_sq:resizeAs(self.mu1):copy(self.mu1):cmul(self.mu1)
|
|
|
+ self.mu2_sq:resizeAs(self.mu2):copy(self.mu2):cmul(self.mu2)
|
|
|
+ self.mu1_mu2:resizeAs(self.mu1):copy(self.mu1):cmul(self.mu2)
|
|
|
+ self.sigma1_sq:resizeAs(valid):copy(self.conv:forward(torch.cmul(input, input)):add(-1, self.mu1_sq))
|
|
|
+ self.sigma2_sq:resizeAs(valid):copy(self.conv:forward(torch.cmul(target, target)):add(-1, self.mu2_sq))
|
|
|
+ self.sigma12:resizeAs(valid):copy(self.conv:forward(torch.cmul(input, target)):add(-1, self.mu1_mu2))
|
|
|
+
|
|
|
+ local ssim = self.mu1_mu2:mul(2):add(self.c1):cmul(self.sigma12:mul(2):add(self.c2)):
|
|
|
+ cdiv(self.mu1_sq:add(self.mu2_sq):add(self.c1):cmul(self.sigma1_sq:add(self.sigma2_sq):add(self.c2))):mean()
|
|
|
+ return ssim
|
|
|
+end
|
|
|
+function SSIMCriterion:updateGradInput(input, target)
|
|
|
+ error("not implemented")
|
|
|
+end
|