12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- -- SSIM Index, ref: http://www.cns.nyu.edu/~lcv/ssim/ssim_index.m
- local SSIMCriterion, parent = torch.class('w2nn.SSIMCriterion','nn.Criterion')
- function SSIMCriterion:__init(ch, kernel_size, sigma)
- parent.__init(self)
- local function gaussian2d(kernel_size, sigma)
- sigma = sigma or 1
- local kernel = torch.Tensor(kernel_size, kernel_size)
- local u = math.floor(kernel_size / 2) + 1
- local amp = (1 / math.sqrt(2 * math.pi * sigma^2))
- for x = 1, kernel_size do
- for y = 1, kernel_size do
- kernel[x][y] = amp * math.exp(-((x - u)^2 + (y - u)^2) / (2 * sigma^2))
- end
- end
- kernel:div(kernel:sum())
- return kernel
- end
- ch = ch or 1
- kernel_size = kernel_size or 11
- sigma = sigma or 1.5
- local kernel = gaussian2d(kernel_size, sigma)
- if ch > 1 then
- local kernel_nd = torch.Tensor(ch, ch, kernel_size, kernel_size)
- for i = 1, ch do
- for j = 1, ch do
- kernel_nd[i][j]:copy(kernel)
- if i ~= j then
- kernel_nd[i][j]:zero()
- end
- end
- end
- kernel = kernel_nd
- end
- self.c1 = 0.01^2
- self.c2 = 0.03^2
- self.ch = ch
- self.conv = nn.SpatialConvolution(ch, ch, kernel_size, kernel_size, 1, 1, 0, 0):noBias()
- self.conv.weight:copy(kernel)
- self.mu1 = torch.Tensor()
- self.mu2 = torch.Tensor()
- self.mu1_sq = torch.Tensor()
- self.mu2_sq = torch.Tensor()
- self.mu1_mu2 = torch.Tensor()
- self.sigma1_sq = torch.Tensor()
- self.sigma2_sq = torch.Tensor()
- self.sigma12 = torch.Tensor()
- self.ssim_map = torch.Tensor()
- end
- function SSIMCriterion:updateOutput(input, target)-- dynamic range: 0-1
- assert(input:nElement() == target:nElement())
- local valid = self.conv:forward(input)
- self.mu1:resizeAs(valid):copy(valid)
- self.mu2:resizeAs(valid):copy(self.conv:forward(target))
- self.mu1_sq:resizeAs(self.mu1):copy(self.mu1):cmul(self.mu1)
- self.mu2_sq:resizeAs(self.mu2):copy(self.mu2):cmul(self.mu2)
- self.mu1_mu2:resizeAs(self.mu1):copy(self.mu1):cmul(self.mu2)
- self.sigma1_sq:resizeAs(valid):copy(self.conv:forward(torch.cmul(input, input)):add(-1, self.mu1_sq))
- self.sigma2_sq:resizeAs(valid):copy(self.conv:forward(torch.cmul(target, target)):add(-1, self.mu2_sq))
- self.sigma12:resizeAs(valid):copy(self.conv:forward(torch.cmul(input, target)):add(-1, self.mu1_mu2))
- local ssim = self.mu1_mu2:mul(2):add(self.c1):cmul(self.sigma12:mul(2):add(self.c2)):
- cdiv(self.mu1_sq:add(self.mu2_sq):add(self.c1):cmul(self.sigma1_sq:add(self.sigma2_sq):add(self.c2))):mean()
- return ssim
- end
- function SSIMCriterion:updateGradInput(input, target)
- error("not implemented")
- end
|