|
@@ -794,73 +794,104 @@ function srcnn.upcunet(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
-function srcnn.prog_net(backend, ch)
|
|
|
- function base_upscaler(backend, ch)
|
|
|
+-- cascaded residual spatial channel attention unet
|
|
|
+function srcnn.upcunet_v2(backend, ch)
|
|
|
+ function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
+ local block = nn.Sequential()
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local model = nn.Sequential()
|
|
|
+
|
|
|
+ block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling
|
|
|
+ block:add(insert)
|
|
|
+ block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
+ con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
+ con:add(block)
|
|
|
+ model:add(con)
|
|
|
+ model:add(nn.CAddTable())
|
|
|
+ return model
|
|
|
+ end
|
|
|
+ function unet_conv(n_input, n_middle, n_output, se)
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(nn.SpatialZeroPadding(-11, -11, -11, -11))
|
|
|
- model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
|
|
|
+ model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
+ if se then
|
|
|
+ -- Spatial Squeeze and Excitation Networks
|
|
|
+ local se_fac = 4
|
|
|
+ local con = nn.ConcatTable(2)
|
|
|
+ local attention = nn.Sequential()
|
|
|
+ attention:add(nn.SpatialAveragePooling(4, 4, 4, 4))
|
|
|
+ attention:add(SpatialConvolution(backend, n_output, math.floor(n_output / se_fac), 1, 1, 1, 1, 0, 0))
|
|
|
+ attention:add(nn.ReLU(true))
|
|
|
+ attention:add(SpatialConvolution(backend, math.floor(n_output / se_fac), n_output, 1, 1, 1, 1, 0, 0))
|
|
|
+ attention:add(nn.Sigmoid(true))
|
|
|
+ attention:add(nn.SpatialUpSamplingNearest(4, 4))
|
|
|
+ con:add(nn.Identity())
|
|
|
+ con:add(attention)
|
|
|
+ model:add(con)
|
|
|
+ model:add(nn.CMulTable())
|
|
|
+ end
|
|
|
return model
|
|
|
end
|
|
|
- function block(backend, input, output)
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local conv = nn.Sequential()
|
|
|
- local dil = nn.Sequential()
|
|
|
- local b = nn.Sequential()
|
|
|
-
|
|
|
- conv:add(SpatialConvolution(backend, input, output, 3, 3, 1, 1, 0, 0))
|
|
|
- conv:add(nn.SpatialZeroPadding(-5, -5, -5, -5))
|
|
|
-
|
|
|
- dil:add(SpatialDilatedConvolution(backend, input, output, 3, 3, 1, 1, 0, 0, 2, 2))
|
|
|
- dil:add(nn.LeakyReLU(0.1, true))
|
|
|
- dil:add(SpatialDilatedConvolution(backend, output, output, 3, 3, 1, 1, 0, 0, 4, 4))
|
|
|
-
|
|
|
- con:add(conv)
|
|
|
- con:add(dil)
|
|
|
-
|
|
|
- b:add(con)
|
|
|
- b:add(nn.CAddTable())
|
|
|
- b:add(nn.LeakyReLU(0.1, true))
|
|
|
-
|
|
|
- return b
|
|
|
- end
|
|
|
- function texture_upscaler(backend, ch)
|
|
|
+ -- Residual U-Net
|
|
|
+ function unet(backend, in_ch, out_ch, deconv)
|
|
|
+ local block1 = unet_conv(128, 256, 128, true)
|
|
|
+ local block2 = nn.Sequential()
|
|
|
+ block2:add(unet_conv(64, 64, 128, true))
|
|
|
+ block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
+ block2:add(unet_conv(128, 64, 64, true))
|
|
|
local model = nn.Sequential()
|
|
|
- model:add(w2nn.EdgeFilter(ch))
|
|
|
- model:add(SpatialConvolution(backend, ch * 8, 32, 1, 1, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(block(backend, 32, 128))
|
|
|
- model:add(block(backend, 128, 256))
|
|
|
- model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
+ model:add(unet_conv(in_ch, 32, 64, false))
|
|
|
+ model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
+ if deconv then
|
|
|
+ model:add(SpatialFullConvolution(backend, 64, out_ch, 4, 4, 2, 2, 3, 3))
|
|
|
+ else
|
|
|
+ model:add(SpatialConvolution(backend, 64, out_ch, 3, 3, 1, 1, 0, 0))
|
|
|
+ end
|
|
|
return model
|
|
|
end
|
|
|
local model = nn.Sequential()
|
|
|
local con = nn.ConcatTable()
|
|
|
- local aux = nn.ConcatTable()
|
|
|
+ local aux_con = nn.ConcatTable()
|
|
|
|
|
|
- con:add(base_upscaler(backend, ch))
|
|
|
- con:add(texture_upscaler(backend, ch))
|
|
|
+ -- 2 cascade
|
|
|
+ model:add(unet(backend, ch, ch, true))
|
|
|
+ con:add(nn.Sequential():add(unet(backend, ch, ch, false)):add(nn.SpatialZeroPadding(-1, -1, -1, -1))) -- -1 for odd output size
|
|
|
+ con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
|
|
|
- aux:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01()):add(nn.View(-1):setNumInputDims(3)))
|
|
|
- aux:add(nn.Sequential():add(nn.SelectTable(1)):add(nn.View(-1):setNumInputDims(3)))
|
|
|
+ aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
+ aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
|
|
|
model:add(con)
|
|
|
- model:add(aux)
|
|
|
- model:add(w2nn.AuxiliaryLossTable(1))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "prog_net"
|
|
|
- model.w2nn_offset = 28
|
|
|
+ model:add(aux_con)
|
|
|
+ model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
+
|
|
|
+ model.w2nn_arch_name = "upcunet_v2"
|
|
|
+ model.w2nn_offset = 58
|
|
|
model.w2nn_scale_factor = 2
|
|
|
model.w2nn_channels = ch
|
|
|
model.w2nn_resize = true
|
|
|
+ model.w2nn_valid_input_size = {76,92,108,140,156,172,188,204,220,236,252,268,284,300,316,332,348,364,380,396,412,428,444,460,476,492,508}
|
|
|
|
|
|
return model
|
|
|
end
|
|
|
-
|
|
|
+local function bench()
|
|
|
+ local sys = require 'sys'
|
|
|
+ cudnn.benchmark = false
|
|
|
+ local model = nil
|
|
|
+ local arch = {"upconv_7", "upcunet", "upcunet_v2"}
|
|
|
+ local backend = "cunn"
|
|
|
+ for k = 1, #arch do
|
|
|
+ model = srcnn[arch[k]](backend, 3):cuda()
|
|
|
+ model:training()
|
|
|
+ t = sys.clock()
|
|
|
+ for i = 1, 10 do
|
|
|
+ model:forward(torch.Tensor(1, 3, 172, 172):zero():cuda())
|
|
|
+ end
|
|
|
+ print(arch[k], sys.clock() - t)
|
|
|
+ end
|
|
|
+end
|
|
|
function srcnn.create(model_name, backend, color)
|
|
|
model_name = model_name or "vgg_7"
|
|
|
backend = backend or "cunn"
|
|
@@ -881,59 +912,15 @@ function srcnn.create(model_name, backend, color)
|
|
|
error("unsupported model_name: " .. model_name)
|
|
|
end
|
|
|
end
|
|
|
-
|
|
|
-
|
|
|
--[[
|
|
|
-local model = srcnn.fcn_v1("cunn", 3):cuda()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 108, 108):zero():cuda()):size())
|
|
|
-print(model)
|
|
|
-local model = srcnn.unet_refine("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
-local model = srcnn.cupconv_14("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
-os.exit()
|
|
|
-local model = srcnn.cupconv_14("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()):size())
|
|
|
-os.exit()
|
|
|
-
|
|
|
-local model = srcnn.upconv_refine("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()))
|
|
|
-os.exit()
|
|
|
-
|
|
|
-local model = srcnn.nw2("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 64, 64):zero():cuda()))
|
|
|
-os.exit()
|
|
|
-
|
|
|
-local model = srcnn.prog_net("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 128, 128):zero():cuda()))
|
|
|
-os.exit()
|
|
|
-local model = srcnn.double_unet("cunn", 3):cuda()
|
|
|
-print(model)
|
|
|
-model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()))
|
|
|
-os.exit()
|
|
|
-
|
|
|
local model = srcnn.cunet_v3("cunn", 3):cuda()
|
|
|
print(model)
|
|
|
model:training()
|
|
|
print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()):size())
|
|
|
-os.exit()
|
|
|
-local model = srcnn.cunet_v6("cunn", 3):cuda()
|
|
|
+local model = srcnn.upcunet_v2("cunn", 3):cuda()
|
|
|
print(model)
|
|
|
model:training()
|
|
|
-print(model:forward(torch.Tensor(1, 3, 144, 144):zero():cuda()))
|
|
|
+print(model:forward(torch.Tensor(1, 3, 76, 76):zero():cuda()))
|
|
|
os.exit()
|
|
|
-
|
|
|
-
|
|
|
--]]
|
|
|
-
|
|
|
return srcnn
|