|
@@ -710,281 +710,8 @@ function srcnn.upconv_refine(backend, ch)
|
|
|
return model
|
|
|
end
|
|
|
|
|
|
--- cascade u-net
|
|
|
-function srcnn.cunet_v1(backend, ch)
|
|
|
- function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local pooling = SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0) -- downsampling
|
|
|
- --block:add(w2nn.Print())
|
|
|
- block:add(pooling)
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- local parallel = nn.ConcatTable(2)
|
|
|
- parallel:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- parallel:add(block)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(parallel)
|
|
|
- model:add(nn.JoinTable(2))
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_conv(n_input, n_middle, n_output)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet(backend, ch, deconv)
|
|
|
- --
|
|
|
- local block1 = unet_conv(128, 256, 128)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(32, 64, 128))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128*2, 64, 32))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(ch, 32, 32))
|
|
|
- model:add(unet_branch(block2, backend, 32, 32, 16))
|
|
|
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialFullConvolution(backend, 128, ch, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local aux_con = nn.ConcatTable()
|
|
|
-
|
|
|
- model:add(unet(backend, ch, true))
|
|
|
-
|
|
|
- con:add(unet(backend, ch, false))
|
|
|
- con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
-
|
|
|
- aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
- aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output
|
|
|
-
|
|
|
- model:add(con)
|
|
|
- model:add(aux_con)
|
|
|
- model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
-
|
|
|
- model.w2nn_arch_name = "cunet_v1"
|
|
|
- model.w2nn_offset = 60
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
- -- 72, 128, 256 are valid
|
|
|
- --model.w2nn_input_size = 128
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
--- cascade u-net
|
|
|
-function srcnn.cunet_v2(backend, ch)
|
|
|
- function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local pooling = SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0) -- downsampling
|
|
|
- --block:add(w2nn.Print())
|
|
|
- block:add(pooling)
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- local parallel = nn.ConcatTable(2)
|
|
|
- parallel:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- parallel:add(block)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(parallel)
|
|
|
- model:add(nn.CAddTable(2))
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_conv(n_input, n_middle, n_output)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- return model
|
|
|
- end
|
|
|
- -- res unet
|
|
|
- function unet(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(128, 256, 128)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(64, 128, 128))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128, 128, 64))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(nn.SpatialZeroPadding(-1, -1, -1, -1))
|
|
|
- model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- model:add(SpatialFullConvolution(backend, 128, 64, 4, 4, 2, 2, 3, 3))
|
|
|
- else
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local aux_con = nn.ConcatTable()
|
|
|
-
|
|
|
- model:add(unet(backend, ch, true))
|
|
|
- con:add(unet(backend, 64, false))
|
|
|
- con:add(nn.SpatialZeroPadding(-19, -19, -19, -19))
|
|
|
-
|
|
|
- model:add(con)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
-
|
|
|
- model.w2nn_arch_name = "cunet_v2"
|
|
|
- model.w2nn_offset = 60
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
- -- 72, 128, 256 are valid
|
|
|
- --model.w2nn_input_size = 128
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
--- cascade u-net
|
|
|
-function srcnn.cunet_v3(backend, ch)
|
|
|
- function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local pooling = SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0) -- downsampling
|
|
|
- --block:add(w2nn.Print())
|
|
|
- block:add(pooling)
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- local parallel = nn.ConcatTable(2)
|
|
|
- parallel:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- parallel:add(block)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(parallel)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_conv(n_input, n_middle, n_output)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet(backend, ch, deconv)
|
|
|
- local block1 = unet_conv(128, 256, 128)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(64, 64, 128))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128, 64, 64))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(unet_conv(ch, 32, 64))
|
|
|
- model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
- if deconv then
|
|
|
- model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1))
|
|
|
- model:add(SpatialFullConvolution(backend, 128, 64, 4, 4, 2, 2, 3, 3))
|
|
|
- end
|
|
|
- return model
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
-
|
|
|
- model:add(unet(backend, ch, true))
|
|
|
- model:add(nn.ConcatTable():add(unet(backend, 64, false)):add(nn.SpatialZeroPadding(-18, -18, -18, -18)))
|
|
|
- model:add(nn.CAddTable())
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU())
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
-
|
|
|
- model.w2nn_arch_name = "cunet_v3"
|
|
|
- model.w2nn_offset = 60
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
- -- 72, 128, 256 are valid
|
|
|
- --model.w2nn_input_size = 128
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
--- cascade u-net
|
|
|
-function srcnn.cunet_v4(backend, ch)
|
|
|
- function upconv_3(backend, n_input, n_output)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialFullConvolution(backend, 32, n_output, 4, 4, 2, 2, 3, 3):noBias())
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
- local block = nn.Sequential()
|
|
|
- local pooling = SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0) -- downsampling
|
|
|
- --block:add(w2nn.Print())
|
|
|
- block:add(pooling)
|
|
|
- block:add(insert)
|
|
|
- block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling
|
|
|
- local parallel = nn.ConcatTable(2)
|
|
|
- parallel:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))
|
|
|
- parallel:add(block)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(parallel)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet_conv(n_input, n_middle, n_output)
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- return model
|
|
|
- end
|
|
|
- function unet(backend, ch)
|
|
|
- local block1 = unet_conv(128, 256, 128)
|
|
|
- local block2 = nn.Sequential()
|
|
|
- block2:add(unet_conv(64, 64, 128))
|
|
|
- block2:add(unet_branch(block1, backend, 128, 128, 4))
|
|
|
- block2:add(unet_conv(128, 64, 64))
|
|
|
- local model = nn.Sequential()
|
|
|
- model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU(0.1, true))
|
|
|
- model:add(unet_branch(block2, backend, 64, 64, 16))
|
|
|
- return model
|
|
|
- end
|
|
|
- local model = nn.Sequential()
|
|
|
- local con = nn.ConcatTable()
|
|
|
- local aux_con = nn.ConcatTable()
|
|
|
-
|
|
|
- model:add(upconv_3(backend, ch, 64))
|
|
|
-
|
|
|
- con:add(unet(backend, 32))
|
|
|
- --con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
|
-
|
|
|
- aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output
|
|
|
- aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single output
|
|
|
-
|
|
|
- model:add(conn)
|
|
|
- model:add(nn.CAddTable())
|
|
|
- model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(nn.LeakyReLU())
|
|
|
- model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
|
|
|
- model:add(w2nn.InplaceClip01())
|
|
|
- model.w2nn_arch_name = "cunet_v3"
|
|
|
- model.w2nn_offset = 60
|
|
|
- model.w2nn_scale_factor = 2
|
|
|
- model.w2nn_channels = ch
|
|
|
- model.w2nn_resize = true
|
|
|
- -- 72, 128, 256 are valid
|
|
|
- --model.w2nn_input_size = 128
|
|
|
-
|
|
|
- return model
|
|
|
-end
|
|
|
-
|
|
|
-function srcnn.cunet_v6(backend, ch)
|
|
|
+-- cascaded residual channel attention unet
|
|
|
+function srcnn.upcunet(backend, ch)
|
|
|
function unet_branch(insert, backend, n_input, n_output, depad)
|
|
|
local block = nn.Sequential()
|
|
|
local con = nn.ConcatTable(2)
|
|
@@ -1044,6 +771,7 @@ function srcnn.cunet_v6(backend, ch)
|
|
|
local con = nn.ConcatTable()
|
|
|
local aux_con = nn.ConcatTable()
|
|
|
|
|
|
+ -- 2 cascade
|
|
|
model:add(unet(backend, ch, true))
|
|
|
con:add(unet(backend, ch, false))
|
|
|
con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))
|
|
@@ -1055,7 +783,7 @@ function srcnn.cunet_v6(backend, ch)
|
|
|
model:add(aux_con)
|
|
|
model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output
|
|
|
|
|
|
- model.w2nn_arch_name = "cunet_v6"
|
|
|
+ model.w2nn_arch_name = "upcunet"
|
|
|
model.w2nn_offset = 60
|
|
|
model.w2nn_scale_factor = 2
|
|
|
model.w2nn_channels = ch
|