123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718 |
- require 'pl'
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
- require 'optim'
- require 'xlua'
- require 'image'
- require 'w2nn'
- local threads = require 'threads'
- local settings = require 'settings'
- local srcnn = require 'srcnn'
- local minibatch_adam = require 'minibatch_adam'
- local iproc = require 'iproc'
- local reconstruct = require 'reconstruct'
- local image_loader = require 'image_loader'
- local function save_test_scale(model, rgb, file)
- local up = reconstruct.scale(model, settings.scale, rgb)
- image.save(file, up)
- end
- local function save_test_jpeg(model, rgb, file)
- local im, count = reconstruct.image(model, rgb)
- image.save(file, im)
- end
- local function save_test_user(model, rgb, file)
- if settings.scale == 1 then
- save_test_jpeg(model, rgb, file)
- else
- save_test_scale(model, rgb, file)
- end
- end
- local function split_data(x, test_size)
- if settings.validation_filename_split then
- if not (x[1][2].data and x[1][2].data.basename) then
- error("`images.t` does not have basename info. You need to re-run `convert_data.lua`.")
- end
- local basename_db = {}
- for i = 1, #x do
- local meta = x[i][2].data
- if basename_db[meta.basename] then
- table.insert(basename_db[meta.basename], x[i])
- else
- basename_db[meta.basename] = {x[i]}
- end
- end
- local basename_list = {}
- for k, v in pairs(basename_db) do
- table.insert(basename_list, v)
- end
- local index = torch.randperm(#basename_list)
- local train_x = {}
- local valid_x = {}
- local pos = 1
- for i = 1, #basename_list do
- if #valid_x >= test_size then
- break
- end
- local xs = basename_list[index[pos]]
- for j = 1, #xs do
- table.insert(valid_x, xs[j])
- end
- pos = pos + 1
- end
- for i = pos, #basename_list do
- local xs = basename_list[index[i]]
- for j = 1, #xs do
- table.insert(train_x, xs[j])
- end
- end
- return train_x, valid_x
- else
- local index = torch.randperm(#x)
- local train_size = #x - test_size
- local train_x = {}
- local valid_x = {}
- for i = 1, train_size do
- train_x[i] = x[index[i]]
- end
- for i = 1, test_size do
- valid_x[i] = x[index[train_size + i]]
- end
- return train_x, valid_x
- end
- end
- local g_transform_pool = nil
- local g_mutex = nil
- local g_mutex_id = nil
- local function transform_pool_init(has_resize, offset)
- local nthread = torch.getnumthreads()
- if (settings.thread > 0) then
- nthread = settings.thread
- end
- g_mutex = threads.Mutex()
- g_mutex_id = g_mutex:id()
- g_transform_pool = threads.Threads(
- nthread,
- threads.safe(
- function(threadid)
- require 'pl'
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
- require 'torch'
- require 'nn'
- require 'cunn'
- torch.setnumthreads(1)
- torch.setdefaulttensortype("torch.FloatTensor")
- local threads = require 'threads'
- local compression = require 'compression'
- local pairwise_transform = require 'pairwise_transform'
- function transformer(x, is_validation, n)
- local mutex = threads.Mutex(g_mutex_id)
- local meta = {data = {}}
- local y = nil
- if type(x) == "table" and type(x[2]) == "table" then
- meta = x[2]
- if x[1].x and x[1].y then
- y = compression.decompress(x[1].y)
- x = compression.decompress(x[1].x)
- else
- x = compression.decompress(x[1])
- end
- else
- x = compression.decompress(x)
- end
- n = n or settings.patches
- if is_validation == nil then is_validation = false end
- local random_color_noise_rate = nil
- local random_overlay_rate = nil
- local active_cropping_rate = nil
- local active_cropping_tries = nil
- if is_validation then
- active_cropping_rate = settings.active_cropping_rate
- active_cropping_tries = settings.active_cropping_tries
- random_color_noise_rate = 0.0
- random_overlay_rate = 0.0
- else
- active_cropping_rate = settings.active_cropping_rate
- active_cropping_tries = settings.active_cropping_tries
- random_color_noise_rate = settings.random_color_noise_rate
- random_overlay_rate = settings.random_overlay_rate
- end
- if settings.method == "scale" then
- local conf = tablex.update({
- mutex = mutex,
- downsampling_filters = settings.downsampling_filters,
- random_half_rate = settings.random_half_rate,
- random_color_noise_rate = random_color_noise_rate,
- random_overlay_rate = random_overlay_rate,
- random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
- random_blur_rate = settings.random_blur_rate,
- random_blur_size = settings.random_blur_size,
- random_blur_sigma_min = settings.random_blur_sigma_min,
- random_blur_sigma_max = settings.random_blur_sigma_max,
- max_size = settings.max_size,
- active_cropping_rate = active_cropping_rate,
- active_cropping_tries = active_cropping_tries,
- rgb = (settings.color == "rgb"),
- x_upsampling = not has_resize,
- resize_blur_min = settings.resize_blur_min,
- resize_blur_max = settings.resize_blur_max}, meta)
- return pairwise_transform.scale(x,
- settings.scale,
- settings.crop_size, offset,
- n, conf)
- elseif settings.method == "noise" then
- local conf = tablex.update({
- mutex = mutex,
- random_half_rate = settings.random_half_rate,
- random_color_noise_rate = random_color_noise_rate,
- random_overlay_rate = random_overlay_rate,
- random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
- random_blur_rate = settings.random_blur_rate,
- random_blur_size = settings.random_blur_size,
- random_blur_sigma_min = settings.random_blur_sigma_min,
- random_blur_sigma_max = settings.random_blur_sigma_max,
- max_size = settings.max_size,
- jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
- active_cropping_rate = active_cropping_rate,
- active_cropping_tries = active_cropping_tries,
- nr_rate = settings.nr_rate,
- rgb = (settings.color == "rgb")}, meta)
- return pairwise_transform.jpeg(x,
- settings.style,
- settings.noise_level,
- settings.crop_size, offset,
- n, conf)
- elseif settings.method == "noise_scale" then
- local conf = tablex.update({
- mutex = mutex,
- downsampling_filters = settings.downsampling_filters,
- random_half_rate = settings.random_half_rate,
- random_color_noise_rate = random_color_noise_rate,
- random_overlay_rate = random_overlay_rate,
- random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
- random_blur_rate = settings.random_blur_rate,
- random_blur_size = settings.random_blur_size,
- random_blur_sigma_min = settings.random_blur_sigma_min,
- random_blur_sigma_max = settings.random_blur_sigma_max,
- max_size = settings.max_size,
- jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
- nr_rate = settings.nr_rate,
- active_cropping_rate = active_cropping_rate,
- active_cropping_tries = active_cropping_tries,
- rgb = (settings.color == "rgb"),
- x_upsampling = not has_resize,
- resize_blur_min = settings.resize_blur_min,
- resize_blur_max = settings.resize_blur_max}, meta)
- return pairwise_transform.jpeg_scale(x,
- settings.scale,
- settings.style,
- settings.noise_level,
- settings.crop_size, offset,
- n, conf)
- elseif settings.method == "user" then
- local random_erasing_rate = 0
- local random_erasing_n = 0
- local random_erasing_rect_min = 0
- local random_erasing_rect_max = 0
- if is_validation then
- else
- random_erasing_rate = settings.random_erasing_rate
- random_erasing_n = settings.random_erasing_n
- random_erasing_rect_min = settings.random_erasing_rect_min
- random_erasing_rect_max = settings.random_erasing_rect_max
- end
- local conf = tablex.update({
- gcn = settings.gcn,
- max_size = settings.max_size,
- active_cropping_rate = active_cropping_rate,
- active_cropping_tries = active_cropping_tries,
- random_pairwise_rotate_rate = settings.random_pairwise_rotate_rate,
- random_pairwise_rotate_min = settings.random_pairwise_rotate_min,
- random_pairwise_rotate_max = settings.random_pairwise_rotate_max,
- random_pairwise_scale_rate = settings.random_pairwise_scale_rate,
- random_pairwise_scale_min = settings.random_pairwise_scale_min,
- random_pairwise_scale_max = settings.random_pairwise_scale_max,
- random_pairwise_negate_rate = settings.random_pairwise_negate_rate,
- random_pairwise_negate_x_rate = settings.random_pairwise_negate_x_rate,
- pairwise_y_binary = settings.pairwise_y_binary,
- pairwise_flip = settings.pairwise_flip,
- random_erasing_rate = random_erasing_rate,
- random_erasing_n = random_erasing_n,
- random_erasing_rect_min = random_erasing_rect_min,
- random_erasing_rect_max = random_erasing_rect_max,
- rgb = (settings.color == "rgb")}, meta)
- return pairwise_transform.user(x, y,
- settings.crop_size, offset,
- n, conf)
- end
- end
- end)
- )
- g_transform_pool:synchronize()
- end
- local function make_validation_set(x, n, patches)
- local nthread = torch.getnumthreads()
- if (settings.thread > 0) then
- nthread = settings.thread
- end
- n = n or 4
- local validation_patches = math.min(16, patches or 16)
- local data = {}
- g_transform_pool:synchronize()
- torch.setnumthreads(1) -- 1
- for i = 1, #x do
- for k = 1, math.max(n / validation_patches, 1) do
- local input = x[i]
- g_transform_pool:addjob(
- function()
- local xy = transformer(input, true, validation_patches)
- return xy
- end,
- function(xy)
- for j = 1, #xy do
- table.insert(data, {x = xy[j][1], y = xy[j][2]})
- end
- end
- )
- end
- if i % 20 == 0 then
- collectgarbage()
- g_transform_pool:synchronize()
- xlua.progress(i, #x)
- end
- end
- g_transform_pool:synchronize()
- torch.setnumthreads(nthread) -- revert
- local new_data = {}
- local perm = torch.randperm(#data)
- for i = 1, perm:size(1) do
- new_data[i] = data[perm[i]]
- end
- data = new_data
- return data
- end
- local function validate(model, criterion, eval_metric, data, batch_size)
- local psnr = 0
- local loss = 0
- local mse = 0
- local loss_count = 0
- local inputs_tmp = torch.Tensor(batch_size,
- data[1].x:size(1),
- data[1].x:size(2),
- data[1].x:size(3)):zero()
- local targets_tmp = torch.Tensor(batch_size,
- data[1].y:size(1),
- data[1].y:size(2),
- data[1].y:size(3)):zero()
- local inputs = inputs_tmp:clone():cuda()
- local targets = targets_tmp:clone():cuda()
- for t = 1, #data, batch_size do
- if t + batch_size -1 > #data then
- break
- end
- for i = 1, batch_size do
- inputs_tmp[i]:copy(data[t + i - 1].x)
- targets_tmp[i]:copy(data[t + i - 1].y)
- end
- inputs:copy(inputs_tmp)
- targets:copy(targets_tmp)
- local z = model:forward(inputs)
- local batch_mse = eval_metric:forward(z, targets)
- loss = loss + criterion:forward(z, targets)
- mse = mse + batch_mse
- psnr = psnr + (10 * math.log10(1 / (batch_mse + 1.0e-6)))
- loss_count = loss_count + 1
- if loss_count % 10 == 0 then
- xlua.progress(t, #data)
- collectgarbage()
- end
- end
- xlua.progress(#data, #data)
- return {loss = loss / loss_count, MSE = mse / loss_count, PSNR = psnr / loss_count}
- end
- local function create_criterion(model)
- if settings.loss == "huber" then
- if reconstruct.is_rgb(model) then
- local offset = reconstruct.offset_size(model)
- local output_w = settings.crop_size - offset * 2
- local weight = torch.Tensor(3, output_w * output_w)
- weight[1]:fill(0.29891 * 3) -- R
- weight[2]:fill(0.58661 * 3) -- G
- weight[3]:fill(0.11448 * 3) -- B
- return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
- else
- local offset = reconstruct.offset_size(model)
- local output_w = settings.crop_size - offset * 2
- local weight = torch.Tensor(1, output_w * output_w)
- weight[1]:fill(1.0)
- return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
- end
- elseif settings.loss == "l1" then
- return w2nn.L1Criterion():cuda()
- elseif settings.loss == "mse" then
- return w2nn.ClippedMSECriterion(0, 1.0):cuda()
- elseif settings.loss == "bce" then
- local bce = nn.BCECriterion()
- bce.sizeAverage = true
- return bce:cuda()
- elseif settings.loss == "aux_bce" then
- local aux = w2nn.AuxiliaryLossCriterion(nn.BCECriterion)
- aux.sizeAverage = true
- return aux:cuda()
- elseif settings.loss == "aux_huber" then
- local args = {}
- if reconstruct.is_rgb(model) then
- local offset = reconstruct.offset_size(model)
- local output_w = settings.crop_size - offset * 2
- local weight = torch.Tensor(3, output_w * output_w)
- weight[1]:fill(0.29891 * 3) -- R
- weight[2]:fill(0.58661 * 3) -- G
- weight[3]:fill(0.11448 * 3) -- B
- args = {weight, 0.1, {0.0, 1.0}}
- else
- local offset = reconstruct.offset_size(model)
- local output_w = settings.crop_size - offset * 2
- local weight = torch.Tensor(1, output_w * output_w)
- weight[1]:fill(1.0)
- args = {weight, 0.1, {0.0, 1.0}}
- end
- local aux = w2nn.AuxiliaryLossCriterion(w2nn.ClippedWeightedHuberCriterion, args)
- return aux:cuda()
- elseif settings.loss == "lbp" then
- if reconstruct.is_rgb(model) then
- return w2nn.LBPCriterion(3, 128):cuda()
- else
- return w2nn.LBPCriterion(1, 128):cuda()
- end
- elseif settings.loss == "lbp2" then
- if reconstruct.is_rgb(model) then
- return w2nn.LBPCriterion(3, 128, 3, 2):cuda()
- else
- return w2nn.LBPCriterion(1, 128, 3, 2):cuda()
- end
- elseif settings.loss == "aux_lbp" then
- if reconstruct.is_rgb(model) then
- return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {3, 128}):cuda()
- else
- return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {1, 128}):cuda()
- end
- elseif settings.loss == "aux_lbp2" then
- if reconstruct.is_rgb(model) then
- return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {3, 128, 3, 2}):cuda()
- else
- return w2nn.AuxiliaryLossCriterion(w2nn.LBPCriterion, {1, 128, 3, 2}):cuda()
- end
- else
- error("unsupported loss .." .. settings.loss)
- end
- end
- local function resampling(x, y, train_x)
- local c = 1
- local shuffle = torch.randperm(#train_x)
- local nthread = torch.getnumthreads()
- if (settings.thread > 0) then
- nthread = settings.thread
- end
- torch.setnumthreads(1) -- 1
- for t = 1, #train_x do
- local input = train_x[shuffle[t]]
- g_transform_pool:addjob(
- function()
- local xy = transformer(input, false, settings.patches)
- return xy
- end,
- function(xy)
- for i = 1, #xy do
- if c <= x:size(1) then
- x[c]:copy(xy[i][1])
- y[c]:copy(xy[i][2])
- c = c + 1
- else
- break
- end
- end
- end
- )
- if t % 50 == 0 then
- collectgarbage()
- g_transform_pool:synchronize()
- xlua.progress(t, #train_x)
- end
- if c > x:size(1) then
- break
- end
- end
- g_transform_pool:synchronize()
- xlua.progress(#train_x, #train_x)
- torch.setnumthreads(nthread) -- revert
- end
- local function get_oracle_data(x, y, instance_loss, k, samples)
- local index = torch.LongTensor(instance_loss:size(1))
- local dummy = torch.Tensor(instance_loss:size(1))
- torch.topk(dummy, index, instance_loss, k, 1, true)
- print("MSE of all data: " ..instance_loss:mean() .. ", MSE of oracle data: " .. dummy:mean())
- local shuffle = torch.randperm(k)
- local x_s = x:size()
- local y_s = y:size()
- x_s[1] = samples
- y_s[1] = samples
- local oracle_x = torch.Tensor(table.unpack(torch.totable(x_s)))
- local oracle_y = torch.Tensor(table.unpack(torch.totable(y_s)))
- for i = 1, samples do
- oracle_x[i]:copy(x[index[shuffle[i]]])
- oracle_y[i]:copy(y[index[shuffle[i]]])
- end
- return oracle_x, oracle_y
- end
- local function remove_small_image(x)
- local compression = require 'compression'
- local new_x = {}
- for i = 1, #x do
- local xe, meta, x_s
- xe = x[i]
- if type(x) == "table" and type(x[2]) == "table" then
- if xe[1].x and xe[1].y then
- x_s = compression.size(xe[1].y) -- y size
- else
- x_s = compression.size(xe[1])
- end
- else
- x_s = compression.size(xe)
- end
- if x_s[2] / settings.scale > settings.crop_size + 32 and
- x_s[3] / settings.scale > settings.crop_size + 32 then
- table.insert(new_x, x[i])
- end
- if i % 100 == 0 then
- collectgarbage()
- end
- end
- print(string.format("%d small images are removed", #x - #new_x))
- return new_x
- end
- local function plot(train, valid)
- gnuplot.plot({
- {'training', torch.Tensor(train), '-'},
- {'validation', torch.Tensor(valid), '-'}})
- end
- local function train()
- local x = torch.load(settings.images)
- if settings.method ~= "user" then
- x = remove_small_image(x)
- end
- local train_x, valid_x = split_data(x, math.max(math.floor(settings.validation_rate * #x), 1))
- local hist_train = {}
- local hist_valid = {}
- local adam_config = {
- xLearningRate = settings.learning_rate,
- xBatchSize = settings.batch_size,
- xLearningRateDecay = settings.learning_rate_decay,
- xInstanceLoss = (settings.oracle_rate > 0)
- }
- local model
- if settings.resume:len() > 0 then
- model = w2nn.load_model(settings.resume, settings.backend == "cudnn", "ascii")
- adam_config.xEvalCount = math.floor((#train_x * settings.patches) / settings.batch_size) * settings.batch_size * settings.inner_epoch * (settings.resume_epoch - 1)
- print(string.format("set eval count = %d", adam_config.xEvalCount))
- if adam_config.xEvalCount > 0 then
- adam_config.learningRate = adam_config.xLearningRate / (1 + adam_config.xEvalCount * adam_config.xLearningRateDecay)
- print(string.format("set learning rate = %E", adam_config.learningRate))
- else
- adam_config.xEvalCount = 0
- adam_config.learningRate = adam_config.xLearningRate
- end
- else
- if stringx.endswith(settings.model, ".lua") then
- local create_model = dofile(settings.model)
- model = create_model(srcnn, settings)
- else
- model = srcnn.create(settings.model, settings.backend, settings.color)
- end
- end
- if model.w2nn_input_size then
- if settings.crop_size ~= model.w2nn_input_size then
- io.stderr:write(string.format("warning: crop_size is replaced with %d\n",
- model.w2nn_input_size))
- settings.crop_size = model.w2nn_input_size
- end
- end
- if model.w2nn_gcn then
- settings.gcn = true
- else
- settings.gcn = false
- end
- dir.makepath(settings.model_dir)
- local offset = reconstruct.offset_size(model)
- transform_pool_init(reconstruct.has_resize(model), offset)
- local criterion = create_criterion(model)
- local eval_metric = nil
- if settings.loss:find("aux_") ~= nil then
- eval_metric = w2nn.AuxiliaryLossCriterion(w2nn.ClippedMSECriterion):cuda()
- else
- eval_metric = w2nn.ClippedMSECriterion():cuda()
- end
- local ch = nil
- if settings.color == "y" then
- ch = 1
- elseif settings.color == "rgb" then
- ch = 3
- end
- local best_score = 1000.0
- print("# make validation-set")
- local valid_xy = make_validation_set(valid_x,
- settings.validation_crops,
- settings.patches)
- valid_x = nil
-
- collectgarbage()
- model:cuda()
- print("load .. " .. #train_x)
- local x = nil
- local y = torch.Tensor(settings.patches * #train_x,
- ch * (settings.crop_size - offset * 2) * (settings.crop_size - offset * 2)):zero()
- if reconstruct.has_resize(model) then
- x = torch.Tensor(settings.patches * #train_x,
- ch, settings.crop_size / settings.scale, settings.crop_size / settings.scale)
- else
- x = torch.Tensor(settings.patches * #train_x,
- ch, settings.crop_size, settings.crop_size)
- end
- local instance_loss = nil
- local pmodel = w2nn.data_parallel(model, settings.gpu)
- for epoch = settings.resume_epoch, settings.epoch do
- pmodel:training()
- print("# " .. epoch)
- if adam_config.learningRate then
- print("learning rate: " .. adam_config.learningRate)
- end
- print("## resampling")
- if instance_loss then
- -- active learning
- local oracle_k = math.min(x:size(1) * (settings.oracle_rate * (1 / (1 - settings.oracle_drop_rate))), x:size(1))
- local oracle_n = math.min(x:size(1) * settings.oracle_rate, x:size(1))
- if oracle_n > 0 then
- local oracle_x, oracle_y = get_oracle_data(x, y, instance_loss, oracle_k, oracle_n)
- resampling(x:narrow(1, oracle_x:size(1) + 1, x:size(1)-oracle_x:size(1)),
- y:narrow(1, oracle_x:size(1) + 1, x:size(1) - oracle_x:size(1)), train_x)
- x:narrow(1, 1, oracle_x:size(1)):copy(oracle_x)
- y:narrow(1, 1, oracle_y:size(1)):copy(oracle_y)
- local draw_n = math.floor(math.sqrt(oracle_x:size(1), 0.5))
- if draw_n > 100 then
- draw_n = 100
- end
- image.save(path.join(settings.model_dir, "oracle_x.png"),
- image.toDisplayTensor({
- input = oracle_x:narrow(1, 1, draw_n * draw_n),
- padding = 2,
- nrow = draw_n,
- min = 0,
- max = 1}))
- else
- resampling(x, y, train_x)
- end
- else
- resampling(x, y, train_x, pairwise_func)
- end
- collectgarbage()
- instance_loss = torch.Tensor(x:size(1)):zero()
- for i = 1, settings.inner_epoch do
- pmodel:training()
- local train_score, il = minibatch_adam(pmodel, criterion, eval_metric, x, y, adam_config)
- instance_loss:copy(il)
- print(train_score)
- pmodel:evaluate()
- print("# validation")
- local score = validate(pmodel, criterion, eval_metric, valid_xy, adam_config.xBatchSize)
- table.insert(hist_train, train_score.loss)
- table.insert(hist_valid, score.loss)
- if settings.plot then
- plot(hist_train, hist_valid)
- end
- local score_for_update
- if settings.update_criterion == "mse" then
- score_for_update = score.MSE
- else
- score_for_update = score.loss
- end
- if score_for_update < best_score then
- local test_image = image_loader.load_float(settings.test) -- reload
- best_score = score_for_update
- print("* model has updated")
- if settings.save_history then
- pmodel:clearState()
- torch.save(settings.model_file_best, model, "ascii")
- torch.save(string.format(settings.model_file, epoch, i), model, "ascii")
- if settings.method == "noise" then
- local log = path.join(settings.model_dir,
- ("noise%d_best.%d-%d.png"):format(settings.noise_level,
- epoch, i))
- save_test_jpeg(model, test_image, log)
- elseif settings.method == "scale" then
- local log = path.join(settings.model_dir,
- ("scale%.1f_best.%d-%d.png"):format(settings.scale,
- epoch, i))
- save_test_scale(model, test_image, log)
- elseif settings.method == "noise_scale" then
- local log = path.join(settings.model_dir,
- ("noise%d_scale%.1f_best.%d-%d.png"):format(settings.noise_level,
- settings.scale,
- epoch, i))
- save_test_scale(model, test_image, log)
- elseif settings.method == "user" then
- local log = path.join(settings.model_dir,
- ("%s_best.%d-%d.png"):format(settings.name,
- epoch, i))
- save_test_user(model, test_image, log)
- end
- else
- pmodel:clearState()
- torch.save(settings.model_file, model, "ascii")
- if settings.method == "noise" then
- local log = path.join(settings.model_dir,
- ("noise%d_best.png"):format(settings.noise_level))
- save_test_jpeg(model, test_image, log)
- elseif settings.method == "scale" then
- local log = path.join(settings.model_dir,
- ("scale%.1f_best.png"):format(settings.scale))
- save_test_scale(model, test_image, log)
- elseif settings.method == "noise_scale" then
- local log = path.join(settings.model_dir,
- ("noise%d_scale%.1f_best.png"):format(settings.noise_level,
- settings.scale))
- save_test_scale(model, test_image, log)
- elseif settings.method == "user" then
- local log = path.join(settings.model_dir,
- ("%s_best.png"):format(settings.name))
- save_test_user(model, test_image, log)
- end
- end
- end
- print("Batch-wise PSNR: " .. score.PSNR .. ", loss: " .. score.loss .. ", MSE: " .. score.MSE .. ", best: " .. best_score)
- collectgarbage()
- end
- end
- end
- torch.manualSeed(settings.seed)
- cutorch.manualSeed(settings.seed)
- print(settings)
- train()
|