cudnn2cunn.lua 1.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. require 'pl'
  2. local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
  3. package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
  4. require 'os'
  5. require 'w2nn'
  6. local srcnn = require 'srcnn'
  7. local function cudnn2cunn(cudnn_model)
  8. local name = srcnn.name(cudnn_model)
  9. local cunn_model = srcnn[name]('cunn', srcnn.channels(cudnn_model))
  10. local param_layers = {
  11. {cunn="nn.SpatialConvolutionMM", cudnn="cudnn.SpatialConvolution", attr={"bias", "weight"}},
  12. {cunn="nn.SpatialDilatedConvolution", cudnn="cudnn.SpatialDilatedConvolution", attr={"bias", "weight"}},
  13. {cunn="nn.SpatialFullConvolution", cudnn="cudnn.SpatialFullConvolution", attr={"bias", "weight"}},
  14. {cunn="nn.Linear", cudnn="nn.Linear", attr={"bias", "weight"}}
  15. }
  16. for i = 1, #param_layers do
  17. local p = param_layers[i]
  18. local weight_from = cudnn_model:findModules(p.cudnn)
  19. local weight_to = cunn_model:findModules(p.cunn)
  20. print(p.cudnn, #weight_from)
  21. assert(#weight_from == #weight_to)
  22. for i = 1, #weight_from do
  23. local from = weight_from[i]
  24. local to = weight_to[i]
  25. to.weight:copy(from.weight)
  26. if to.bias then
  27. to.bias:copy(from.bias)
  28. end
  29. end
  30. end
  31. cunn_model:cuda()
  32. cunn_model:evaluate()
  33. return cunn_model
  34. end
  35. local cmd = torch.CmdLine()
  36. cmd:text()
  37. cmd:text("waifu2x cudnn model to cunn model converter")
  38. cmd:text("Options:")
  39. cmd:option("-i", "", 'Specify the input cunn model')
  40. cmd:option("-o", "", 'Specify the output cudnn model')
  41. cmd:option("-iformat", "ascii", 'Specify the input format (ascii|binary)')
  42. cmd:option("-oformat", "ascii", 'Specify the output format (ascii|binary)')
  43. local opt = cmd:parse(arg)
  44. if not path.isfile(opt.i) then
  45. cmd:help()
  46. os.exit(-1)
  47. end
  48. local cudnn_model = torch.load(opt.i, opt.iformat)
  49. local cunn_model = cudnn2cunn(cudnn_model)
  50. torch.save(opt.o, cunn_model, opt.oformat)