123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- require 'pl'
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
- require 'image'
- local cjson = require 'cjson'
- local csvigo = require 'csvigo'
- local compression = require 'compression'
- local settings = require 'settings'
- local image_loader = require 'image_loader'
- local iproc = require 'iproc'
- local alpha_util = require 'alpha_util'
- local function crop_if_large(src, max_size)
- if max_size < 0 then
- return src
- end
- local tries = 4
- if src:size(2) >= max_size and src:size(3) >= max_size then
- local rect
- for i = 1, tries do
- local yi = torch.random(0, src:size(2) - max_size)
- local xi = torch.random(0, src:size(3) - max_size)
- rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
- -- ignore simple background
- if rect:float():std() >= 0 then
- break
- end
- end
- return rect
- else
- return src
- end
- end
- local function crop_if_large_pair(x, y, max_size)
- if max_size < 0 then
- return x, y
- end
- local scale_y = y:size(2) / x:size(2)
- local mod = 4
- assert(x:size(3) == (y:size(3) / scale_y))
- local tries = 4
- if y:size(2) > max_size and y:size(3) > max_size then
- assert(max_size % 4 == 0)
- local rect_x, rect_y
- for i = 1, tries do
- local yi = torch.random(0, y:size(2) - max_size)
- local xi = torch.random(0, y:size(3) - max_size)
- if mod then
- yi = yi - (yi % mod)
- xi = xi - (xi % mod)
- end
- rect_y = iproc.crop(y, xi, yi, xi + max_size, yi + max_size)
- rect_x = iproc.crop(y, xi / scale_y, yi / scale_y, xi / scale_y + max_size / scale_y, yi / scale_y + max_size / scale_y)
- -- ignore simple background
- if rect_y:float():std() >= 0 then
- break
- end
- end
- return rect_x, rect_y
- else
- return x, y
- end
- end
- local function padding_x(x, pad, x_zero)
- if pad > 0 then
- if x_zero then
- x = iproc.zero_padding(x, pad, pad, pad, pad)
- else
- x = iproc.padding(x, pad, pad, pad, pad)
- end
- end
- return x
- end
- local function padding_xy(x, y, pad, x_zero, y_zero)
- local scale = y:size(2) / x:size(2)
- if pad > 0 then
- if x_zero then
- x = iproc.zero_padding(x, pad, pad, pad, pad)
- else
- x = iproc.padding(x, pad, pad, pad, pad)
- end
- if y_zero then
- y = iproc.zero_padding(y, pad * scale, pad * scale, pad * scale, pad * scale)
- else
- y = iproc.padding(y, pad * scale, pad * scale, pad * scale, pad * scale)
- end
- end
- return x, y
- end
- local function load_images(list)
- local MARGIN = 32
- local csv = csvigo.load({path = list, verbose = false, mode = "raw"})
- local x = {}
- local skip_notice = false
- for i = 1, #csv do
- local filters = nil
- local filename = csv[i][1]
- local csv_meta = csv[i][2]
- if csv_meta and csv_meta:len() > 0 then
- csv_meta = cjson.decode(csv_meta)
- end
- if csv_meta and csv_meta.filters then
- filters = csv_meta.filters
- end
- local basename_y = path.basename(filename)
- local im, meta = image_loader.load_byte(filename)
- local skip = false
- local alpha_color = torch.random(0, 1)
- if im then
- if meta and meta.alpha then
- if settings.use_transparent_png then
- im = alpha_util.fill(im, meta.alpha, alpha_color)
- else
- skip = true
- end
- end
- if skip then
- if not skip_notice then
- io.stderr:write("skip transparent png (settings.use_transparent_png=0)\n")
- skip_notice = true
- end
- else
- if csv_meta and csv_meta.x then
- -- method == user
- local yy = im
- local xx, meta2 = image_loader.load_byte(csv_meta.x)
- if settings.invert_x then
- xx = (-(xx:long()) + 255):byte()
- end
- if xx then
- if meta2 and meta2.alpha then
- xx = alpha_util.fill(xx, meta2.alpha, alpha_color)
- end
- xx, yy = crop_if_large_pair(xx, yy, settings.max_training_image_size)
- xx, yy = padding_xy(xx, yy, settings.padding, settings.padding_x_zero, settings.padding_y_zero)
- if settings.grayscale then
- xx = iproc.rgb2y(xx)
- yy = iproc.rgb2y(yy)
- end
- table.insert(x, {{y = compression.compress(yy), x = compression.compress(xx)},
- {data = {filters = filters, has_x = true, basename = basename_y}}})
- else
- io.stderr:write(string.format("\n%s: skip: load error.\n", csv_meta.x))
- end
- else
- im = crop_if_large(im, settings.max_training_image_size)
- im = iproc.crop_mod4(im)
- im = padding_x(im, settings.padding, settings.padding_x_zero)
- local scale = 1.0
- if settings.random_half_rate > 0.0 then
- scale = 2.0
- end
- if im:size(2) > (settings.crop_size * scale + MARGIN) and im:size(3) > (settings.crop_size * scale + MARGIN) then
- if settings.grayscale then
- im = iproc.rgb2y(im)
- end
- table.insert(x, {compression.compress(im), {data = {filters = filters, basename = basename_y}}})
- else
- io.stderr:write(string.format("\n%s: skip: image is too small (%d > size).\n", filename, settings.crop_size * scale + MARGIN))
- end
- end
- end
- else
- io.stderr:write(string.format("\n%s: skip: load error.\n", filename))
- end
- xlua.progress(i, #csv)
- if i % 10 == 0 then
- collectgarbage()
- end
- end
- return x
- end
- torch.manualSeed(settings.seed)
- print(settings)
- local x = load_images(settings.image_list)
- torch.save(settings.images, x)
|