cunet.txt 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204
  1. nn.Sequential {
  2. [input -> (1) -> (2) -> (3) -> (4) -> output]
  3. (1): nn.Sequential {
  4. [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  5. (1): nn.Sequential {
  6. [input -> (1) -> (2) -> (3) -> (4) -> output]
  7. (1): nn.SpatialConvolutionMM(3 -> 32, 3x3)
  8. (2): nn.LeakyReLU(0.1)
  9. (3): nn.SpatialConvolutionMM(32 -> 64, 3x3)
  10. (4): nn.LeakyReLU(0.1)
  11. }
  12. (2): nn.Sequential {
  13. [input -> (1) -> (2) -> output]
  14. (1): nn.ConcatTable {
  15. input
  16. |`-> (1): nn.Sequential {
  17. | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  18. | (1): nn.SpatialConvolutionMM(64 -> 64, 2x2, 2,2)
  19. | (2): nn.LeakyReLU(0.1)
  20. | (3): nn.Sequential {
  21. | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
  22. | (1): nn.SpatialConvolutionMM(64 -> 128, 3x3)
  23. | (2): nn.LeakyReLU(0.1)
  24. | (3): nn.SpatialConvolutionMM(128 -> 64, 3x3)
  25. | (4): nn.LeakyReLU(0.1)
  26. | (5): nn.ConcatTable {
  27. | input
  28. | |`-> (1): nn.Identity
  29. | `-> (2): nn.Sequential {
  30. | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  31. | (1): nn.Sequential {
  32. | [input -> (1) -> (2) -> (3) -> output]
  33. | (1): nn.Mean
  34. | (2): nn.Mean
  35. | (3): nn.View(-1, 64, 1, 1)
  36. | }
  37. | (2): nn.SpatialConvolutionMM(64 -> 8, 1x1)
  38. | (3): nn.ReLU
  39. | (4): nn.SpatialConvolutionMM(8 -> 64, 1x1)
  40. | (5): nn.Sigmoid
  41. | }
  42. | ... -> output
  43. | }
  44. | (6): w2nn.ScaleTable
  45. | }
  46. | (4): nn.SpatialFullConvolution(64 -> 64, 2x2, 2,2)
  47. | (5): nn.LeakyReLU(0.1)
  48. | }
  49. `-> (2): nn.SpatialZeroPadding(l=-4, r=-4, t=-4, b=-4)
  50. ... -> output
  51. }
  52. (2): nn.CAddTable
  53. }
  54. (3): nn.SpatialConvolutionMM(64 -> 64, 3x3)
  55. (4): nn.LeakyReLU(0.1)
  56. (5): nn.SpatialConvolutionMM(64 -> 3, 3x3)
  57. }
  58. (2): nn.ConcatTable {
  59. input
  60. |`-> (1): nn.Sequential {
  61. | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  62. | (1): nn.Sequential {
  63. | [input -> (1) -> (2) -> (3) -> (4) -> output]
  64. | (1): nn.SpatialConvolutionMM(3 -> 32, 3x3)
  65. | (2): nn.LeakyReLU(0.1)
  66. | (3): nn.SpatialConvolutionMM(32 -> 64, 3x3)
  67. | (4): nn.LeakyReLU(0.1)
  68. | }
  69. | (2): nn.Sequential {
  70. | [input -> (1) -> (2) -> output]
  71. | (1): nn.ConcatTable {
  72. | input
  73. | |`-> (1): nn.Sequential {
  74. | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  75. | | (1): nn.SpatialConvolutionMM(64 -> 64, 2x2, 2,2)
  76. | | (2): nn.LeakyReLU(0.1)
  77. | | (3): nn.Sequential {
  78. | | [input -> (1) -> (2) -> (3) -> output]
  79. | | (1): nn.Sequential {
  80. | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
  81. | | (1): nn.SpatialConvolutionMM(64 -> 64, 3x3)
  82. | | (2): nn.LeakyReLU(0.1)
  83. | | (3): nn.SpatialConvolutionMM(64 -> 128, 3x3)
  84. | | (4): nn.LeakyReLU(0.1)
  85. | | (5): nn.ConcatTable {
  86. | | input
  87. | | |`-> (1): nn.Identity
  88. | | `-> (2): nn.Sequential {
  89. | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  90. | | (1): nn.Sequential {
  91. | | [input -> (1) -> (2) -> (3) -> output]
  92. | | (1): nn.Mean
  93. | | (2): nn.Mean
  94. | | (3): nn.View(-1, 128, 1, 1)
  95. | | }
  96. | | (2): nn.SpatialConvolutionMM(128 -> 16, 1x1)
  97. | | (3): nn.ReLU
  98. | | (4): nn.SpatialConvolutionMM(16 -> 128, 1x1)
  99. | | (5): nn.Sigmoid
  100. | | }
  101. | | ... -> output
  102. | | }
  103. | | (6): w2nn.ScaleTable
  104. | | }
  105. | | (2): nn.Sequential {
  106. | | [input -> (1) -> (2) -> output]
  107. | | (1): nn.ConcatTable {
  108. | | input
  109. | | |`-> (1): nn.Sequential {
  110. | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  111. | | | (1): nn.SpatialConvolutionMM(128 -> 128, 2x2, 2,2)
  112. | | | (2): nn.LeakyReLU(0.1)
  113. | | | (3): nn.Sequential {
  114. | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
  115. | | | (1): nn.SpatialConvolutionMM(128 -> 256, 3x3)
  116. | | | (2): nn.LeakyReLU(0.1)
  117. | | | (3): nn.SpatialConvolutionMM(256 -> 128, 3x3)
  118. | | | (4): nn.LeakyReLU(0.1)
  119. | | | (5): nn.ConcatTable {
  120. | | | input
  121. | | | |`-> (1): nn.Identity
  122. | | | `-> (2): nn.Sequential {
  123. | | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  124. | | | (1): nn.Sequential {
  125. | | | [input -> (1) -> (2) -> (3) -> output]
  126. | | | (1): nn.Mean
  127. | | | (2): nn.Mean
  128. | | | (3): nn.View(-1, 128, 1, 1)
  129. | | | }
  130. | | | (2): nn.SpatialConvolutionMM(128 -> 16, 1x1)
  131. | | | (3): nn.ReLU
  132. | | | (4): nn.SpatialConvolutionMM(16 -> 128, 1x1)
  133. | | | (5): nn.Sigmoid
  134. | | | }
  135. | | | ... -> output
  136. | | | }
  137. | | | (6): w2nn.ScaleTable
  138. | | | }
  139. | | | (4): nn.SpatialFullConvolution(128 -> 128, 2x2, 2,2)
  140. | | | (5): nn.LeakyReLU(0.1)
  141. | | | }
  142. | | `-> (2): nn.SpatialZeroPadding(l=-4, r=-4, t=-4, b=-4)
  143. | | ... -> output
  144. | | }
  145. | | (2): nn.CAddTable
  146. | | }
  147. | | (3): nn.Sequential {
  148. | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
  149. | | (1): nn.SpatialConvolutionMM(128 -> 64, 3x3)
  150. | | (2): nn.LeakyReLU(0.1)
  151. | | (3): nn.SpatialConvolutionMM(64 -> 64, 3x3)
  152. | | (4): nn.LeakyReLU(0.1)
  153. | | (5): nn.ConcatTable {
  154. | | input
  155. | | |`-> (1): nn.Identity
  156. | | `-> (2): nn.Sequential {
  157. | | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  158. | | (1): nn.Sequential {
  159. | | [input -> (1) -> (2) -> (3) -> output]
  160. | | (1): nn.Mean
  161. | | (2): nn.Mean
  162. | | (3): nn.View(-1, 64, 1, 1)
  163. | | }
  164. | | (2): nn.SpatialConvolutionMM(64 -> 8, 1x1)
  165. | | (3): nn.ReLU
  166. | | (4): nn.SpatialConvolutionMM(8 -> 64, 1x1)
  167. | | (5): nn.Sigmoid
  168. | | }
  169. | | ... -> output
  170. | | }
  171. | | (6): w2nn.ScaleTable
  172. | | }
  173. | | }
  174. | | (4): nn.SpatialFullConvolution(64 -> 64, 2x2, 2,2)
  175. | | (5): nn.LeakyReLU(0.1)
  176. | | }
  177. | `-> (2): nn.SpatialZeroPadding(l=-16, r=-16, t=-16, b=-16)
  178. | ... -> output
  179. | }
  180. | (2): nn.CAddTable
  181. | }
  182. | (3): nn.SpatialConvolutionMM(64 -> 64, 3x3)
  183. | (4): nn.LeakyReLU(0.1)
  184. | (5): nn.SpatialConvolutionMM(64 -> 3, 3x3)
  185. | }
  186. `-> (2): nn.SpatialZeroPadding(l=-20, r=-20, t=-20, b=-20)
  187. ... -> output
  188. }
  189. (3): nn.ConcatTable {
  190. input
  191. |`-> (1): nn.Sequential {
  192. | [input -> (1) -> (2) -> output]
  193. | (1): nn.CAddTable
  194. | (2): w2nn.InplaceClip01
  195. | }
  196. `-> (2): nn.Sequential {
  197. [input -> (1) -> (2) -> output]
  198. (1): nn.SelectTable(2)
  199. (2): w2nn.InplaceClip01
  200. }
  201. ... -> output
  202. }
  203. (4): w2nn.AuxiliaryLossTable
  204. }