train.lua 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. require 'cutorch'
  2. require 'cunn'
  3. require 'optim'
  4. require 'xlua'
  5. require 'pl'
  6. local settings = require './lib/settings'
  7. local minibatch_adam = require './lib/minibatch_adam'
  8. local iproc = require './lib/iproc'
  9. local create_model = require './lib/srcnn'
  10. local reconstruct = require './lib/reconstruct'
  11. local pairwise_transform = require './lib/pairwise_transform'
  12. local image_loader = require './lib/image_loader'
  13. local function save_test_scale(model, rgb, file)
  14. local input = iproc.scale(rgb,
  15. rgb:size(3) * settings.scale,
  16. rgb:size(2) * settings.scale)
  17. local up = reconstruct(model, input, settings.block_offset)
  18. image.save(file, up)
  19. end
  20. local function save_test_jpeg(model, rgb, file)
  21. local im, count = reconstruct(model, rgb, settings.block_offset)
  22. image.save(file, im)
  23. end
  24. local function split_data(x, test_size)
  25. local index = torch.randperm(#x)
  26. local train_size = #x - test_size
  27. local train_x = {}
  28. local valid_x = {}
  29. for i = 1, train_size do
  30. train_x[i] = x[index[i]]
  31. end
  32. for i = 1, test_size do
  33. valid_x[i] = x[index[train_size + i]]
  34. end
  35. return train_x, valid_x
  36. end
  37. local function make_validation_set(x, transformer, n)
  38. n = n or 4
  39. local data = {}
  40. for i = 1, #x do
  41. for k = 1, n do
  42. local x, y = transformer(x[i], true)
  43. table.insert(data, {x = x:reshape(1, x:size(1), x:size(2), x:size(3)),
  44. y = y:reshape(1, y:size(1), y:size(2), y:size(3))})
  45. end
  46. xlua.progress(i, #x)
  47. collectgarbage()
  48. end
  49. return data
  50. end
  51. local function validate(model, criterion, data)
  52. local loss = 0
  53. for i = 1, #data do
  54. local z = model:forward(data[i].x:cuda())
  55. loss = loss + criterion:forward(z, data[i].y:cuda())
  56. xlua.progress(i, #data)
  57. if i % 10 == 0 then
  58. collectgarbage()
  59. end
  60. end
  61. return loss / #data
  62. end
  63. local function train()
  64. local model, offset = create_model()
  65. assert(offset == settings.block_offset)
  66. local criterion = nn.MSECriterion():cuda()
  67. local x = torch.load(settings.images)
  68. local train_x, valid_x = split_data(x,
  69. math.floor(settings.validation_ratio * #x),
  70. settings.validation_crops)
  71. local test = image_loader.load_float(settings.test)
  72. local adam_config = {
  73. learningRate = settings.learning_rate,
  74. xBatchSize = settings.batch_size,
  75. }
  76. local transformer = function(x, is_validation)
  77. if is_validation == nil then is_validation = false end
  78. if settings.method == "scale" then
  79. return pairwise_transform.scale(x,
  80. settings.scale,
  81. settings.crop_size,
  82. offset,
  83. {color_augment = not is_validation,
  84. noise = false,
  85. denoise_model = nil
  86. })
  87. elseif settings.method == "noise" then
  88. return pairwise_transform.jpeg(x, settings.noise_level,
  89. settings.crop_size, offset,
  90. not is_validation)
  91. end
  92. end
  93. local best_score = 100000.0
  94. print("# make validation-set")
  95. local valid_xy = make_validation_set(valid_x, transformer, 20)
  96. valid_x = nil
  97. collectgarbage()
  98. model:cuda()
  99. print("load .. " .. #train_x)
  100. for epoch = 1, settings.epoch do
  101. model:training()
  102. print("# " .. epoch)
  103. print(minibatch_adam(model, criterion, train_x, adam_config,
  104. transformer,
  105. {1, settings.crop_size, settings.crop_size},
  106. {1, settings.crop_size - offset * 2, settings.crop_size - offset * 2}
  107. ))
  108. if epoch % 1 == 0 then
  109. collectgarbage()
  110. model:evaluate()
  111. print("# validation")
  112. local score = validate(model, criterion, valid_xy)
  113. if score < best_score then
  114. best_score = score
  115. print("* update best model")
  116. torch.save(settings.model_file, model)
  117. if settings.method == "noise" then
  118. local log = path.join(settings.model_dir,
  119. ("noise%d_best.png"):format(settings.noise_level))
  120. save_test_jpeg(model, test, log)
  121. elseif settings.method == "scale" then
  122. local log = path.join(settings.model_dir,
  123. ("scale%.1f_best.png"):format(settings.scale))
  124. save_test_scale(model, test, log)
  125. end
  126. end
  127. print("current: " .. score .. ", best: " .. best_score)
  128. end
  129. end
  130. end
  131. torch.manualSeed(settings.seed)
  132. cutorch.manualSeed(settings.seed)
  133. print(settings)
  134. train()