12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- require 'image'
- local iproc = require './iproc'
- local function reconstruct_layer(model, x, block_size, offset)
- if x:dim() == 2 then
- x = x:reshape(1, x:size(1), x:size(2))
- end
- local new_x = torch.Tensor():resizeAs(x):zero()
- local output_size = block_size - offset * 2
- local input = torch.CudaTensor(1, 1, block_size, block_size)
-
- for i = 1, x:size(2), output_size do
- for j = 1, x:size(3), output_size do
- if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then
- local index = {{},
- {i, i + block_size - 1},
- {j, j + block_size - 1}}
- input:copy(x[index])
- local output = model:forward(input):float():view(1, output_size, output_size)
- local output_index = {{},
- {i + offset, offset + i + output_size - 1},
- {offset + j, offset + j + output_size - 1}}
- new_x[output_index]:copy(output)
- end
- end
- end
- return new_x
- end
- local function reconstruct(model, x, offset, block_size)
- block_size = block_size or 128
- local output_size = block_size - offset * 2
- local h_blocks = math.floor(x:size(2) / output_size) +
- ((x:size(2) % output_size == 0 and 0) or 1)
- local w_blocks = math.floor(x:size(3) / output_size) +
- ((x:size(3) % output_size == 0 and 0) or 1)
-
- local h = offset + h_blocks * output_size + offset
- local w = offset + w_blocks * output_size + offset
- local pad_h1 = offset
- local pad_w1 = offset
- local pad_h2 = (h - offset) - x:size(2)
- local pad_w2 = (w - offset) - x:size(3)
- local yuv = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))
- local y = reconstruct_layer(model, yuv[1], block_size, offset)
- y[torch.lt(y, 0)] = 0
- y[torch.gt(y, 1)] = 1
- yuv[1]:copy(y)
- local output = image.yuv2rgb(image.crop(yuv,
- pad_w1, pad_h1,
- yuv:size(3) - pad_w2, yuv:size(2) - pad_h2))
- output[torch.lt(output, 0)] = 0
- output[torch.gt(output, 1)] = 1
- collectgarbage()
-
- return output
- end
- return reconstruct
|