1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- require 'w2nn'
- -- ref: http://arxiv.org/abs/1502.01852
- -- ref: http://arxiv.org/abs/1501.00092
- local srcnn = {}
- function nn.SpatialConvolutionMM:reset(stdv)
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
- self.weight:normal(0, stdv)
- self.bias:zero()
- end
- if cudnn and cudnn.SpatialConvolution then
- function cudnn.SpatialConvolution:reset(stdv)
- stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
- self.weight:normal(0, stdv)
- self.bias:zero()
- end
- end
- function nn.SpatialConvolutionMM:clearState()
- if self.gradWeight then
- self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
- end
- if self.gradBias then
- self.gradBias:resize(self.nOutputPlane):zero()
- end
- return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
- end
- function srcnn.channels(model)
- return model:get(model:size() - 1).weight:size(1)
- end
- function srcnn.waifu2x_cunn(ch)
- local model = nn.Sequential()
- model:add(nn.SpatialConvolutionMM(ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(nn.SpatialConvolutionMM(32, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(nn.SpatialConvolutionMM(64, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(nn.SpatialConvolutionMM(128, ch, 3, 3, 1, 1, 0, 0))
- model:add(nn.View(-1):setNumInputDims(3))
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- function srcnn.waifu2x_cudnn(ch)
- local model = nn.Sequential()
- model:add(cudnn.SpatialConvolution(ch, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(cudnn.SpatialConvolution(32, 32, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(cudnn.SpatialConvolution(32, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(cudnn.SpatialConvolution(64, 64, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(cudnn.SpatialConvolution(64, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(cudnn.SpatialConvolution(128, 128, 3, 3, 1, 1, 0, 0))
- model:add(w2nn.LeakyReLU(0.1))
- model:add(cudnn.SpatialConvolution(128, ch, 3, 3, 1, 1, 0, 0))
- model:add(nn.View(-1):setNumInputDims(3))
- --model:cuda()
- --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
-
- return model
- end
- function srcnn.create(model_name, backend, color)
- local ch = 3
- if color == "rgb" then
- ch = 3
- elseif color == "y" then
- ch = 1
- else
- error("unsupported color: " + color)
- end
- if backend == "cunn" then
- return srcnn.waifu2x_cunn(ch)
- elseif backend == "cudnn" then
- return srcnn.waifu2x_cudnn(ch)
- else
- error("unsupported backend: " + backend)
- end
- end
- return srcnn
|