pairwise_transform_jpeg.lua 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. local pairwise_utils = require 'pairwise_transform_utils'
  2. local gm = require 'graphicsmagick'
  3. local iproc = require 'iproc'
  4. local pairwise_transform = {}
  5. function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
  6. local unstable_region_offset = 8
  7. local y = pairwise_utils.preprocess(src, size, options)
  8. local x = y
  9. local factors
  10. if torch.uniform() < options.jpeg_chroma_subsampling_rate then
  11. -- YUV 420
  12. factors = {2.0, 1.0, 1.0}
  13. else
  14. -- YUV 444
  15. factors = {1.0, 1.0, 1.0}
  16. end
  17. for i = 1, #quality do
  18. x = gm.Image(x, "RGB", "DHW")
  19. local blob, len = x:format("jpeg"):depth(8):samplingFactors(factors):toBlob(quality[i])
  20. x:fromBlob(blob, len)
  21. x = x:toTensor("byte", "RGB", "DHW")
  22. end
  23. x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
  24. x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
  25. y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
  26. y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
  27. assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
  28. assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
  29. local batch = {}
  30. local lowres_y = pairwise_utils.low_resolution(y)
  31. local xs, ys, ls = pairwise_utils.flip_augmentation(x, y, lowres_y)
  32. for i = 1, n do
  33. local t = (i % #xs) + 1
  34. local xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], ls[t], size, 1,
  35. options.active_cropping_rate,
  36. options.active_cropping_tries)
  37. xc = iproc.byte2float(xc)
  38. yc = iproc.byte2float(yc)
  39. if options.rgb then
  40. else
  41. yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
  42. xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
  43. end
  44. if torch.uniform() < options.nr_rate then
  45. -- reducing noise
  46. table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  47. else
  48. -- ratain useful details
  49. table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  50. end
  51. end
  52. return batch
  53. end
  54. function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
  55. if style == "art" then
  56. if level == 0 then
  57. return pairwise_transform.jpeg_(src, {torch.random(85, 95)},
  58. size, offset, n, options)
  59. elseif level == 1 then
  60. return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
  61. size, offset, n, options)
  62. elseif level == 2 or level == 3 then
  63. -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
  64. local r = torch.uniform()
  65. if r > 0.4 then
  66. return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
  67. size, offset, n, options)
  68. elseif r > 0.1 then
  69. local quality1 = torch.random(37, 70)
  70. local quality2 = quality1 - torch.random(5, 10)
  71. return pairwise_transform.jpeg_(src, {quality1, quality2},
  72. size, offset, n, options)
  73. else
  74. local quality1 = torch.random(52, 70)
  75. local quality2 = quality1 - torch.random(5, 15)
  76. local quality3 = quality1 - torch.random(15, 25)
  77. return pairwise_transform.jpeg_(src,
  78. {quality1, quality2, quality3},
  79. size, offset, n, options)
  80. end
  81. else
  82. error("unknown noise level: " .. level)
  83. end
  84. elseif style == "photo" then
  85. if level == 0 then
  86. return pairwise_transform.jpeg_(src, {torch.random(85, 95)},
  87. size, offset, n,
  88. options)
  89. else
  90. return pairwise_transform.jpeg_(src, {torch.random(37, 70)},
  91. size, offset, n,
  92. options)
  93. end
  94. else
  95. error("unknown style: " .. style)
  96. end
  97. end
  98. function pairwise_transform.test_jpeg(src)
  99. torch.setdefaulttensortype("torch.FloatTensor")
  100. local options = {random_color_noise_rate = 0.5,
  101. random_half_rate = 0.5,
  102. random_overlay_rate = 0.5,
  103. random_unsharp_mask_rate = 0.5,
  104. jpeg_chroma_subsampling_rate = 0.5,
  105. nr_rate = 1.0,
  106. active_cropping_rate = 0.5,
  107. active_cropping_tries = 10,
  108. max_size = 256,
  109. rgb = true
  110. }
  111. local image = require 'image'
  112. local src = image.lena()
  113. for i = 1, 9 do
  114. local xy = pairwise_transform.jpeg(src,
  115. "art",
  116. torch.random(1, 2),
  117. 128, 7, 1, options)
  118. image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
  119. image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
  120. end
  121. end
  122. return pairwise_transform