srcnn.lua 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182
  1. require 'w2nn'
  2. -- ref: http://arxiv.org/abs/1502.01852
  3. -- ref: http://arxiv.org/abs/1501.00092
  4. local srcnn = {}
  5. function nn.SpatialConvolutionMM:reset(stdv)
  6. stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
  7. self.weight:normal(0, stdv)
  8. self.bias:zero()
  9. end
  10. if cudnn then
  11. function cudnn.SpatialConvolution:reset(stdv)
  12. stdv = math.sqrt(2 / ((1.0 + 0.1 * 0.1) * self.kW * self.kH * self.nOutputPlane))
  13. self.weight:normal(0, stdv)
  14. self.bias:zero()
  15. end
  16. end
  17. function srcnn.channels(model)
  18. return model:get(model:size() - 1).weight:size(1)
  19. end
  20. function srcnn.waifu2x_cunn(ch)
  21. local model = nn.Sequential()
  22. model:add(nn.SpatialConvolutionMM(ch, 32, 3, 3, 1, 1, 0, 0))
  23. model:add(w2nn.LeakyReLU(0.1))
  24. model:add(nn.SpatialConvolutionMM(32, 32, 3, 3, 1, 1, 0, 0))
  25. model:add(w2nn.LeakyReLU(0.1))
  26. model:add(nn.SpatialConvolutionMM(32, 64, 3, 3, 1, 1, 0, 0))
  27. model:add(w2nn.LeakyReLU(0.1))
  28. model:add(nn.SpatialConvolutionMM(64, 64, 3, 3, 1, 1, 0, 0))
  29. model:add(w2nn.LeakyReLU(0.1))
  30. model:add(nn.SpatialConvolutionMM(64, 128, 3, 3, 1, 1, 0, 0))
  31. model:add(w2nn.LeakyReLU(0.1))
  32. model:add(nn.SpatialConvolutionMM(128, 128, 3, 3, 1, 1, 0, 0))
  33. model:add(w2nn.LeakyReLU(0.1))
  34. model:add(nn.SpatialConvolutionMM(128, ch, 3, 3, 1, 1, 0, 0))
  35. model:add(nn.View(-1):setNumInputDims(3))
  36. --model:cuda()
  37. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  38. return model
  39. end
  40. function srcnn.waifu2x_cudnn(ch)
  41. local model = nn.Sequential()
  42. model:add(cudnn.SpatialConvolution(ch, 32, 3, 3, 1, 1, 0, 0))
  43. model:add(w2nn.LeakyReLU(0.1))
  44. model:add(cudnn.SpatialConvolution(32, 32, 3, 3, 1, 1, 0, 0))
  45. model:add(w2nn.LeakyReLU(0.1))
  46. model:add(cudnn.SpatialConvolution(32, 64, 3, 3, 1, 1, 0, 0))
  47. model:add(w2nn.LeakyReLU(0.1))
  48. model:add(cudnn.SpatialConvolution(64, 64, 3, 3, 1, 1, 0, 0))
  49. model:add(w2nn.LeakyReLU(0.1))
  50. model:add(cudnn.SpatialConvolution(64, 128, 3, 3, 1, 1, 0, 0))
  51. model:add(w2nn.LeakyReLU(0.1))
  52. model:add(cudnn.SpatialConvolution(128, 128, 3, 3, 1, 1, 0, 0))
  53. model:add(w2nn.LeakyReLU(0.1))
  54. model:add(cudnn.SpatialConvolution(128, ch, 3, 3, 1, 1, 0, 0))
  55. model:add(nn.View(-1):setNumInputDims(3))
  56. --model:cuda()
  57. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  58. return model
  59. end
  60. function srcnn.create(model_name, backend, color)
  61. local ch = 3
  62. if color == "rgb" then
  63. ch = 3
  64. elseif color == "y" then
  65. ch = 1
  66. else
  67. error("unsupported color: " + color)
  68. end
  69. if backend == "cunn" then
  70. return srcnn.waifu2x_cunn(ch)
  71. elseif backend == "cudnn" then
  72. return srcnn.waifu2x_cudnn(ch)
  73. else
  74. error("unsupported backend: " + backend)
  75. end
  76. end
  77. return srcnn