| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 | 
							- require 'image'
 
- local iproc = require 'iproc'
 
- local srcnn = require 'srcnn'
 
- local function reconstruct_nn(model, x, inner_scale, offset, block_size, batch_size)
 
-    batch_size = batch_size or 1
 
-    if x:dim() == 2 then
 
-       x = x:reshape(1, x:size(1), x:size(2))
 
-    end
 
-    local ch = x:size(1)
 
-    local new_x = torch.Tensor(x:size(1), x:size(2) * inner_scale, x:size(3) * inner_scale):zero()
 
-    local input_block_size = block_size
 
-    local output_block_size = block_size * inner_scale
 
-    local output_size = output_block_size - offset * 2
 
-    local output_size_in_input = input_block_size - math.ceil(offset / inner_scale) * 2
 
-    local input_indexes = {}
 
-    local output_indexes = {}
 
-    for i = 1, x:size(2), output_size_in_input do
 
-       for j = 1, x:size(3), output_size_in_input do
 
- 	 if i + input_block_size - 1 <= x:size(2) and j + input_block_size - 1 <= x:size(3) then
 
- 	    local index = {{},
 
- 			   {i, i + input_block_size - 1},
 
- 			   {j, j + input_block_size - 1}}
 
- 	    local ii = (i - 1) * inner_scale + 1
 
- 	    local jj = (j - 1) * inner_scale + 1
 
- 	    local output_index = {{}, { ii , ii + output_size - 1 },
 
- 	       { jj, jj + output_size - 1}}
 
- 	    table.insert(input_indexes, index)
 
- 	    table.insert(output_indexes, output_index)
 
- 	 end
 
-       end
 
-    end
 
-    local input = torch.Tensor(batch_size, ch, input_block_size, input_block_size)
 
-    local input_cuda = torch.CudaTensor(batch_size, ch, input_block_size, input_block_size)
 
-    for i = 1, #input_indexes, batch_size do
 
-       local c = 0
 
-       local output
 
-       for j = 0, batch_size - 1 do
 
- 	 if i + j > #input_indexes then
 
- 	    break
 
- 	 end
 
- 	 input[j+1]:copy(x[input_indexes[i + j]])
 
- 	 c = c + 1
 
-       end
 
-       input_cuda:copy(input)
 
-       if c == batch_size then
 
- 	 output = model:forward(input_cuda)
 
-       else
 
- 	 output = model:forward(input_cuda:narrow(1, 1, c))
 
-       end
 
-       --output = output:view(batch_size, ch, output_size, output_size)
 
-       for j = 0, c - 1 do
 
- 	 new_x[output_indexes[i + j]]:copy(output[j+1])
 
-       end
 
-    end
 
-    return new_x
 
- end
 
- local reconstruct = {}
 
- function reconstruct.is_rgb(model)
 
-    if srcnn.channels(model) == 3 then
 
-       -- 3ch RGB
 
-       return true
 
-    else
 
-       -- 1ch Y
 
-       return false
 
-    end
 
- end
 
- function reconstruct.offset_size(model)
 
-    return srcnn.offset_size(model)
 
- end
 
- function reconstruct.has_resize(model)
 
-    return srcnn.scale_factor(model) > 1
 
- end
 
- function reconstruct.inner_scale(model)
 
-    return srcnn.scale_factor(model)
 
- end
 
- local function padding_params(x, model, block_size)
 
-    local p = {}
 
-    local offset = reconstruct.offset_size(model)
 
-    p.x_w = x:size(3)
 
-    p.x_h = x:size(2)
 
-    p.inner_scale = reconstruct.inner_scale(model)
 
-    local input_offset = math.ceil(offset / p.inner_scale)
 
-    local input_block_size = block_size
 
-    local process_size = input_block_size - input_offset * 2
 
-    local h_blocks = math.floor(p.x_h / process_size) +
 
-       ((p.x_h % process_size == 0 and 0) or 1)
 
-    local w_blocks = math.floor(p.x_w / process_size) +
 
-       ((p.x_w % process_size == 0 and 0) or 1)
 
-    local h = (h_blocks * process_size) + input_offset * 2
 
-    local w = (w_blocks * process_size) + input_offset * 2
 
-    p.pad_h1 = input_offset
 
-    p.pad_w1 = input_offset
 
-    p.pad_h2 = (h - input_offset) - p.x_h
 
-    p.pad_w2 = (w - input_offset) - p.x_w
 
-    return p
 
- end
 
- function reconstruct.image_y(model, x, offset, block_size, batch_size)
 
-    block_size = block_size or 128
 
-    local p = padding_params(x, model, block_size)
 
-    x = iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2)
 
-    x = x:cuda()
 
-    x = image.rgb2yuv(x)
 
-    local y = reconstruct_nn(model, x[1], p.inner_scale, offset, block_size, batch_size)
 
-    x = iproc.crop(x, p.pad_w1, p.pad_h1, p.pad_w1 + p.x_w, p.pad_h1 + p.x_h)
 
-    y = iproc.crop(y, 0, 0, p.x_w, p.x_h):clamp(0, 1)
 
-    x[1]:copy(y)
 
-    local output = image.yuv2rgb(x):clamp(0, 1):float()
 
-    x = nil
 
-    y = nil
 
-    collectgarbage()
 
-    return output
 
- end
 
- function reconstruct.scale_y(model, scale, x, offset, block_size, batch_size)
 
-    block_size = block_size or 128
 
-    local x_lanczos
 
-    if reconstruct.has_resize(model) then
 
-       x_lanczos = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Lanczos")
 
-    else
 
-       x_lanczos = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Lanczos")
 
-       x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")
 
-    end
 
-    local p = padding_params(x, model, block_size)
 
-    if p.x_w * p.x_h > 2048*2048 then
 
-       collectgarbage()
 
-    end
 
-    x = iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2)
 
-    x = x:cuda()
 
-    x = image.rgb2yuv(x)
 
-    x_lanczos = image.rgb2yuv(x_lanczos)
 
-    local y = reconstruct_nn(model, x[1], p.inner_scale, offset, block_size, batch_size)
 
-    y = iproc.crop(y, 0, 0, p.x_w * p.inner_scale, p.x_h * p.inner_scale):clamp(0, 1)
 
-    x_lanczos[1]:copy(y)
 
-    local output = image.yuv2rgb(x_lanczos:cuda()):clamp(0, 1):float()
 
-    x = nil
 
-    x_lanczos = nil
 
-    y = nil
 
-    collectgarbage()
 
-    return output
 
- end
 
- function reconstruct.image_rgb(model, x, offset, block_size, batch_size)
 
-    block_size = block_size or 128
 
-    local p = padding_params(x, model, block_size)
 
-    x = iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2)
 
-    if p.x_w * p.x_h > 2048*2048 then
 
-       collectgarbage()
 
-    end
 
-    local y = reconstruct_nn(model, x, p.inner_scale, offset, block_size, batch_size)
 
-    local output = iproc.crop(y, 0, 0, p.x_w, p.x_h):clamp(0, 1)
 
-    x = nil
 
-    y = nil
 
-    collectgarbage()
 
-    return output
 
- end
 
- function reconstruct.scale_rgb(model, scale, x, offset, block_size, batch_size)
 
-    block_size = block_size or 128
 
-    if not reconstruct.has_resize(model) then
 
-       x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")
 
-    end
 
-    local p = padding_params(x, model, block_size)
 
-    x = iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2)
 
-    if p.x_w * p.x_h > 2048*2048 then
 
-       collectgarbage()
 
-    end
 
-    local y
 
-    y = reconstruct_nn(model, x, p.inner_scale, offset, block_size, batch_size)
 
-    local output = iproc.crop(y, 0, 0, p.x_w * p.inner_scale, p.x_h * p.inner_scale):clamp(0, 1)
 
-    x = nil
 
-    y = nil
 
-    collectgarbage()
 
-    return output
 
- end
 
- function reconstruct.image(model, x, block_size)
 
-    local i2rgb = false
 
-    if x:size(1) == 1 then
 
-       local new_x = torch.Tensor(3, x:size(2), x:size(3))
 
-       new_x[1]:copy(x)
 
-       new_x[2]:copy(x)
 
-       new_x[3]:copy(x)
 
-       x = new_x
 
-       i2rgb = true
 
-    end
 
-    if reconstruct.is_rgb(model) then
 
-       x = reconstruct.image_rgb(model, x,
 
- 				reconstruct.offset_size(model), block_size)
 
-    else
 
-       x = reconstruct.image_y(model, x,
 
- 			      reconstruct.offset_size(model), block_size)
 
-    end
 
-    if i2rgb then
 
-       x = image.rgb2y(x)
 
-    end
 
-    return x
 
- end
 
- function reconstruct.scale(model, scale, x, block_size)
 
-    local i2rgb = false
 
-    if x:size(1) == 1 then
 
-       local new_x = torch.Tensor(3, x:size(2), x:size(3))
 
-       new_x[1]:copy(x)
 
-       new_x[2]:copy(x)
 
-       new_x[3]:copy(x)
 
-       x = new_x
 
-       i2rgb = true
 
-    end
 
-    if reconstruct.is_rgb(model) then
 
-       x = reconstruct.scale_rgb(model, scale, x,
 
- 				reconstruct.offset_size(model),
 
- 				block_size)
 
-    else
 
-       x = reconstruct.scale_y(model, scale, x,
 
- 			      reconstruct.offset_size(model),
 
- 			      block_size)
 
-    end
 
-    if i2rgb then
 
-       x = image.rgb2y(x)
 
-    end
 
-    return x
 
- end
 
- local function tr_f(a)
 
-    return a:transpose(2, 3):contiguous() 
 
- end
 
- local function itr_f(a)
 
-    return a:transpose(2, 3):contiguous()
 
- end
 
- local augmented_patterns = {
 
-    {
 
-       forward = function (a) return a end,
 
-       backward = function (a) return a end
 
-    },
 
-    {
 
-       forward = function (a) return image.hflip(a) end,
 
-       backward = function (a) return image.hflip(a) end
 
-    },
 
-    {
 
-       forward = function (a) return image.vflip(a) end,
 
-       backward = function (a) return image.vflip(a) end
 
-    },
 
-    {
 
-       forward = function (a) return image.hflip(image.vflip(a)) end,
 
-       backward = function (a) return image.vflip(image.hflip(a)) end
 
-    },
 
-    {
 
-       forward = function (a) return tr_f(a) end,
 
-       backward = function (a) return itr_f(a) end
 
-    },
 
-    {
 
-       forward = function (a) return image.hflip(tr_f(a)) end,
 
-       backward = function (a) return itr_f(image.hflip(a)) end
 
-    },
 
-    {
 
-       forward = function (a) return image.vflip(tr_f(a)) end,
 
-       backward = function (a) return itr_f(image.vflip(a)) end
 
-    },
 
-    {
 
-       forward = function (a) return image.hflip(image.vflip(tr_f(a))) end,
 
-       backward = function (a) return itr_f(image.vflip(image.hflip(a))) end
 
-    }
 
- }
 
- local function get_augmented_patterns(n)
 
-    if n == 1 then
 
-       -- no tta
 
-       return {augmented_patterns[1]}
 
-    elseif n == 2 then
 
-       return {augmented_patterns[1], augmented_patterns[5]}
 
-    elseif n == 4 then
 
-       return {augmented_patterns[1], augmented_patterns[5],
 
- 	      augmented_patterns[2], augmented_patterns[7]}
 
-    elseif n == 8 then
 
-       return augmented_patterns
 
-    else
 
-       error("unsupported TTA level: " .. n)
 
-    end
 
- end
 
- local function tta(f, n, model, x, block_size)
 
-    local average = nil
 
-    local offset = reconstruct.offset_size(model)
 
-    local augments = get_augmented_patterns(n)
 
-    for i = 1, #augments do 
 
-       local out = augments[i].backward(f(model, augments[i].forward(x), offset, block_size))
 
-       if not average then
 
- 	 average = out
 
-       else
 
- 	 average:add(out)
 
-       end
 
-    end
 
-    return average:div(#augments)
 
- end
 
- function reconstruct.image_tta(model, n, x, block_size)
 
-    if reconstruct.is_rgb(model) then
 
-       return tta(reconstruct.image_rgb, n, model, x, block_size)
 
-    else
 
-       return tta(reconstruct.image_y, n, model, x, block_size)
 
-    end
 
- end
 
- function reconstruct.scale_tta(model, n, scale, x, block_size)
 
-    if reconstruct.is_rgb(model) then
 
-       local f = function (model, x, offset, block_size)
 
- 	 return reconstruct.scale_rgb(model, scale, x, offset, block_size)
 
-       end
 
-       return tta(f, n, model, x, block_size)
 
-    else
 
-       local f = function (model, x, offset, block_size)
 
- 	 return reconstruct.scale_y(model, scale, x, offset, block_size)
 
-       end
 
-       return tta(f, n, model, x, block_size)
 
-    end
 
- end
 
- return reconstruct
 
 
  |