| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 | local pairwise_utils = require 'pairwise_transform_utils'local iproc = require 'iproc'local gm = {}gm.Image = require 'graphicsmagick.Image'local pairwise_transform = {}function pairwise_transform.scale(src, scale, size, offset, n, options)   local filters = options.downsampling_filters   if options.data.filters then      filters = options.data.filters   end   local unstable_region_offset = 8   local downsampling_filter = filters[torch.random(1, #filters)]   local blur = torch.uniform(options.resize_blur_min, options.resize_blur_max)   local y = pairwise_utils.preprocess(src, size, options)   assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)   local down_scale = 1.0 / scale   local x   local small = iproc.scale(y, y:size(3) * down_scale,				  y:size(2) * down_scale, downsampling_filter, blur)   if options.x_upsampling then      x = iproc.scale(small, y:size(3), y:size(2), "Box")   else      x = small   end   local scale_inner = scale   if options.x_upsampling then      scale_inner = 1   end   x = iproc.crop(x, unstable_region_offset, unstable_region_offset,		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)   y = iproc.crop(y, unstable_region_offset * scale_inner, unstable_region_offset * scale_inner,		  y:size(3) - unstable_region_offset * scale_inner, y:size(2) - unstable_region_offset * scale_inner)   if options.x_upsampling then      assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)      assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))   else      assert(x:size(1) == y:size(1) and x:size(2) * scale == y:size(2) and x:size(3) * scale == y:size(3))   end   local batch = {}   local lowres_y = pairwise_utils.low_resolution(y)   local xs, ys, ls, _ = pairwise_utils.flip_augmentation(x, y, lowres_y)   for i = 1, n do      local t = (i % #xs) + 1      local xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], ls[t],						    size,						    scale_inner,						    options.active_cropping_rate,						    options.active_cropping_tries)      xc = iproc.byte2float(xc)      yc = iproc.byte2float(yc)      if options.rgb then      else	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))      end      table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})   end   return batchendfunction pairwise_transform.test_scale(src)   torch.setdefaulttensortype("torch.FloatTensor")   local options = {random_color_noise_rate = 0.5,		    random_half_rate = 0.5,		    random_overlay_rate = 0.5,		    random_unsharp_mask_rate = 0.5,		    active_cropping_rate = 0.5,		    active_cropping_tries = 10,		    max_size = 256,		    x_upsampling = false,		    downsampling_filters = "Box",		    rgb = true   }   local image = require 'image'   local src = image.lena()   for i = 1, 10 do      local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)      image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})      image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})   endendreturn pairwise_transform
 |