123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- require 'pl'
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
- require 'sys'
- require 'w2nn'
- local iproc = require 'iproc'
- local reconstruct = require 'reconstruct'
- local image_loader = require 'image_loader'
- local alpha_util = require 'alpha_util'
- torch.setdefaulttensortype('torch.FloatTensor')
- local function format_output(opt, src, no)
- no = no or 1
- local name = path.basename(src)
- local e = path.extension(name)
- local basename = name:sub(0, name:len() - e:len())
-
- if opt.o == "(auto)" then
- return path.join(path.dirname(src), string.format("%s_%s.png", basename, opt.m))
- else
- local basename_pos = opt.o:find("%%s")
- local no_pos = opt.o:find("%%%d*d")
- if basename_pos ~= nil and no_pos ~= nil then
- if basename_pos < no_pos then
- return string.format(opt.o, basename, no)
- else
- return string.format(opt.o, no, basename)
- end
- elseif basename_pos ~= nil then
- return string.format(opt.o, basename)
- elseif no_pos ~= nil then
- return string.format(opt.o, no)
- else
- return opt.o
- end
- end
- end
- local function convert_image(opt)
- local x, meta = image_loader.load_float(opt.i)
- if not x then
- error(string.format("failed to load image: %s", opt.i))
- end
- local alpha = meta.alpha
- local new_x = nil
- local scale_f, image_f
- if opt.tta == 1 then
- scale_f = function(model, scale, x, block_size, batch_size)
- return reconstruct.scale_tta(model, opt.tta_level,
- scale, x, block_size, batch_size)
- end
- image_f = function(model, x, block_size, batch_size)
- return reconstruct.image_tta(model, opt.tta_level,
- x, block_size, batch_size)
- end
- else
- scale_f = reconstruct.scale
- image_f = reconstruct.image
- end
- opt.o = format_output(opt, opt.i)
- if opt.m == "noise" then
- local model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
- local model = w2nn.load_model(model_path, opt.force_cudnn)
- if not model then
- error("Load Error: " .. model_path)
- end
- local t = sys.clock()
- new_x = image_f(model, x, opt.crop_size, opt.batch_size)
- new_x = alpha_util.composite(new_x, alpha)
- if not opt.q then
- print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
- end
- elseif opt.m == "scale" then
- local model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
- local model = w2nn.load_model(model_path, opt.force_cudnn)
- if not model then
- error("Load Error: " .. model_path)
- end
- local t = sys.clock()
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(model))
- new_x = scale_f(model, opt.scale, x, opt.crop_size, opt.batch_size, opt.batch_size)
- new_x = alpha_util.composite(new_x, alpha, model)
- if not opt.q then
- print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
- end
- elseif opt.m == "noise_scale" then
- local model_path = path.join(opt.model_dir, ("noise%d_scale%.1fx_model.t7"):format(opt.noise_level, opt.scale))
- if path.exists(model_path) then
- local scale_model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
- local t, scale_model = pcall(w2nn.load_model, scale_model_path, opt.force_cudnn)
- local model = w2nn.load_model(model_path, opt.force_cudnn)
- if not t then
- scale_model = model
- end
- local t = sys.clock()
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(scale_model))
- new_x = scale_f(model, opt.scale, x, opt.crop_size, opt.batch_size)
- new_x = alpha_util.composite(new_x, alpha, scale_model)
- if not opt.q then
- print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
- end
- else
- local noise_model_path = path.join(opt.model_dir, ("noise%d_model.t7"):format(opt.noise_level))
- local noise_model = w2nn.load_model(noise_model_path, opt.force_cudnn)
- local scale_model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
- local scale_model = w2nn.load_model(scale_model_path, opt.force_cudnn)
- local t = sys.clock()
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(scale_model))
- x = image_f(noise_model, x, opt.crop_size, opt.batch_size)
- new_x = scale_f(scale_model, opt.scale, x, opt.crop_size, opt.batch_size)
- new_x = alpha_util.composite(new_x, alpha, scale_model)
- if not opt.q then
- print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
- end
- end
- elseif opt.m == "user" then
- local model_path = opt.model_path
- local model = w2nn.load_model(model_path, opt.force_cudnn)
- if not model then
- error("Load Error: " .. model_path)
- end
- local t = sys.clock()
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(model))
- if opt.scale == 1 then
- new_x = image_f(model, x, opt.crop_size, opt.batch_size)
- else
- new_x = scale_f(model, opt.scale, x, opt.crop_size, opt.batch_size)
- end
- new_x = alpha_util.composite(new_x, alpha) -- TODO: should it use model?
- if not opt.q then
- print(opt.o .. ": " .. (sys.clock() - t) .. " sec")
- end
- else
- error("undefined method:" .. opt.method)
- end
- image_loader.save_png(opt.o, new_x, tablex.update({depth = opt.depth, inplace = true}, meta))
- end
- local function convert_frames(opt)
- local model_path, scale_model, t
- local noise_scale_model = {}
- local noise_model = {}
- local user_model = nil
- local scale_f, image_f
- if opt.tta == 1 then
- scale_f = function(model, scale, x, block_size, batch_size)
- return reconstruct.scale_tta(model, opt.tta_level,
- scale, x, block_size, batch_size)
- end
- image_f = function(model, x, block_size, batch_size)
- return reconstruct.image_tta(model, opt.tta_level,
- x, block_size, batch_size)
- end
- else
- scale_f = reconstruct.scale
- image_f = reconstruct.image
- end
- if opt.m == "scale" then
- model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
- scale_model = w2nn.load_model(model_path, opt.force_cudnn)
- elseif opt.m == "noise" then
- model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
- noise_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
- elseif opt.m == "noise_scale" then
- local model_path = path.join(opt.model_dir, ("noise%d_scale%.1fx_model.t7"):format(opt.noise_level, opt.scale))
- if path.exists(model_path) then
- noise_scale_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
- model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
- t, scale_model = pcall(w2nn.load_model, model_path, opt.force_cudnn)
- if not t then
- scale_model = noise_scale_model[opt.noise_level]
- end
- else
- model_path = path.join(opt.model_dir, ("scale%.1fx_model.t7"):format(opt.scale))
- scale_model = w2nn.load_model(model_path, opt.force_cudnn)
- model_path = path.join(opt.model_dir, string.format("noise%d_model.t7", opt.noise_level))
- noise_model[opt.noise_level] = w2nn.load_model(model_path, opt.force_cudnn)
- end
- elseif opt.m == "user" then
- user_model = w2nn.load_model(opt.model_path, opt.force_cudnn)
- end
- local fp = io.open(opt.l)
- if not fp then
- error("Open Error: " .. opt.l)
- end
- local count = 0
- local lines = {}
- for line in fp:lines() do
- table.insert(lines, line)
- end
- fp:close()
-
- for i = 1, #lines do
- local output = format_output(opt, lines[i], i)
- if opt.resume == 0 or path.exists(output) == false then
- local x, meta = image_loader.load_float(lines[i])
- if not x then
- io.stderr:write(string.format("failed to load image: %s\n", lines[i]))
- else
- local alpha = meta.alpha
- local new_x = nil
- if opt.m == "noise" then
- new_x = image_f(noise_model[opt.noise_level], x, opt.crop_size, opt.batch_size)
- new_x = alpha_util.composite(new_x, alpha)
- elseif opt.m == "scale" then
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(scale_model))
- new_x = scale_f(scale_model, opt.scale, x, opt.crop_size, opt.batch_size)
- new_x = alpha_util.composite(new_x, alpha, scale_model)
- elseif opt.m == "noise_scale" then
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(scale_model))
- if noise_scale_model[opt.noise_level] then
- new_x = scale_f(noise_scale_model[opt.noise_level], opt.scale, x, opt.crop_size, opt.batch_size)
- else
- x = image_f(noise_model[opt.noise_level], x, opt.crop_size, opt.batch_size)
- new_x = scale_f(scale_model, opt.scale, x, opt.crop_size, opt.batch_size)
- end
- new_x = alpha_util.composite(new_x, alpha, scale_model)
- elseif opt.m == "user" then
- x = alpha_util.make_border(x, alpha, reconstruct.offset_size(user_model))
- if opt.scale == 1 then
- new_x = image_f(user_model, x, opt.crop_size, opt.batch_size)
- else
- new_x = scale_f(user_model, opt.scale, x, opt.crop_size, opt.batch_size)
- end
- new_x = alpha_util.composite(new_x, alpha)
- else
- error("undefined method:" .. opt.method)
- end
- image_loader.save_png(output, new_x,
- tablex.update({depth = opt.depth, inplace = true}, meta))
- end
- if not opt.q then
- xlua.progress(i, #lines)
- end
- if i % 10 == 0 then
- collectgarbage()
- end
- else
- if not opt.q then
- xlua.progress(i, #lines)
- end
- end
- end
- end
- local function waifu2x()
- local cmd = torch.CmdLine()
- cmd:text()
- cmd:text("waifu2x")
- cmd:text("Options:")
- cmd:option("-i", "images/miku_small.png", 'path to input image')
- cmd:option("-l", "", 'path to image-list.txt')
- cmd:option("-scale", 2, 'scale factor')
- cmd:option("-o", "(auto)", 'path to output file')
- cmd:option("-depth", 8, 'bit-depth of the output image (8|16)')
- cmd:option("-model_dir", "./models/upconv_7/art", 'path to model directory')
- cmd:option("-name", "user", 'model name for user method')
- cmd:option("-m", "noise_scale", 'method (noise|scale|noise_scale|user)')
- cmd:option("-method", "", 'same as -m')
- cmd:option("-noise_level", 1, '(1|2|3)')
- cmd:option("-crop_size", 128, 'patch size per process')
- cmd:option("-batch_size", 1, 'batch_size')
- cmd:option("-resume", 0, "skip existing files (0|1)")
- cmd:option("-thread", -1, "number of CPU threads")
- cmd:option("-tta", 0, 'use TTA mode. It is slow but slightly high quality (0|1)')
- cmd:option("-tta_level", 8, 'TTA level (2|4|8). A higher value makes better quality output but slow')
- cmd:option("-force_cudnn", 0, 'use cuDNN backend (0|1)')
- cmd:option("-q", 0, 'quiet (0|1)')
- local opt = cmd:parse(arg)
- if opt.method:len() > 0 then
- opt.m = opt.method
- end
- if opt.thread > 0 then
- torch.setnumthreads(opt.thread)
- end
- if cudnn then
- cudnn.fastest = true
- if opt.l:len() > 0 then
- cudnn.benchmark = true -- find fastest algo
- else
- cudnn.benchmark = false
- end
- end
- opt.force_cudnn = opt.force_cudnn == 1
- opt.q = opt.q == 1
- opt.model_path = path.join(opt.model_dir, string.format("%s_model.t7", opt.name))
- if string.len(opt.l) == 0 then
- convert_image(opt)
- else
- convert_frames(opt)
- end
- end
- waifu2x()
|