| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 | 
							- -- RandomBinaryConvolution.lua
 
- -- from https://github.com/juefeix/lbcnn.torch
 
- --[[
 
- MIT License
 
- Copyright (c) 2017 Felix Juefei Xu
 
- Permission is hereby granted, free of charge, to any person obtaining a copy
 
- of this software and associated documentation files (the "Software"), to deal
 
- in the Software without restriction, including without limitation the rights
 
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 
- copies of the Software, and to permit persons to whom the Software is
 
- furnished to do so, subject to the following conditions:
 
- The above copyright notice and this permission notice shall be included in all
 
- copies or substantial portions of the Software.
 
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 
- SOFTWARE.
 
- --]]
 
- local THNN = require 'nn.THNN'
 
- local RandomBinaryConvolution, parent = torch.class('w2nn.RandomBinaryConvolution', 'nn.SpatialConvolution')
 
- function RandomBinaryConvolution:__init(nInputPlane, nOutputPlane, kW, kH, kSparsity)
 
-    self.kSparsity = kSparsity or 0.9
 
-    parent.__init(self, nInputPlane, nOutputPlane, kW, kH, 1, 1, 0, 0)
 
-    self:reset()
 
- end
 
- function RandomBinaryConvolution:reset()
 
-    local numElements = self.nInputPlane*self.nOutputPlane*self.kW*self.kH
 
-    self.weight:fill(0)
 
-    self.weight = torch.reshape(self.weight,numElements)
 
-    local index = torch.Tensor(torch.floor(self.kSparsity*numElements)):random(numElements)
 
-    for i = 1, index:numel() do
 
-       self.weight[index[i]] = torch.bernoulli(0.5)*2-1
 
-    end
 
-    self.weight = torch.reshape(self.weight,self.nOutputPlane,self.nInputPlane,self.kW,self.kH)
 
-    self.bias = nil
 
-    self.gradBias = nil	
 
-    self.gradWeight:fill(0)
 
- end
 
- function RandomBinaryConvolution:accGradParameters(input, gradOutput, scale)
 
- end
 
- function RandomBinaryConvolution:updateParameters(learningRate)
 
- end
 
 
  |