| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 | require 'image'local iproc = require 'iproc'local srcnn = require 'srcnn'local function reconstruct_nn(model, x, inner_scale, offset, block_size, batch_size)   batch_size = batch_size or 1   if x:dim() == 2 then      x = x:reshape(1, x:size(1), x:size(2))   end   local ch = x:size(1)   local new_x = torch.Tensor(x:size(1), x:size(2) * inner_scale, x:size(3) * inner_scale):zero()   local input_block_size = block_size   local output_block_size = block_size * inner_scale   local output_size = output_block_size - offset * 2   local output_size_in_input = input_block_size - math.ceil(offset / inner_scale) * 2   local input_indexes = {}   local output_indexes = {}   for i = 1, x:size(2), output_size_in_input do      for j = 1, x:size(3), output_size_in_input do	 if i + input_block_size - 1 <= x:size(2) and j + input_block_size - 1 <= x:size(3) then	    local index = {{},			   {i, i + input_block_size - 1},			   {j, j + input_block_size - 1}}	    local ii = (i - 1) * inner_scale + 1	    local jj = (j - 1) * inner_scale + 1	    local output_index = {{}, { ii , ii + output_size - 1 },	       { jj, jj + output_size - 1}}	    table.insert(input_indexes, index)	    table.insert(output_indexes, output_index)	 end      end   end   local input = torch.Tensor(batch_size, ch, input_block_size, input_block_size)   local input_cuda = torch.CudaTensor(batch_size, ch, input_block_size, input_block_size)   for i = 1, #input_indexes, batch_size do      local c = 0      local output      for j = 0, batch_size - 1 do	 if i + j > #input_indexes then	    break	 end	 input[j+1]:copy(x[input_indexes[i + j]])	 c = c + 1      end      input_cuda:copy(input)      if c == batch_size then	 output = model:forward(input_cuda)      else	 output = model:forward(input_cuda:narrow(1, 1, c))      end      --output = output:view(batch_size, ch, output_size, output_size)      for j = 0, c - 1 do	 new_x[output_indexes[i + j]]:copy(output[j+1])      end   end   return new_xendlocal reconstruct = {}function reconstruct.is_rgb(model)   if srcnn.channels(model) == 3 then      -- 3ch RGB      return true   else      -- 1ch Y      return false   endendfunction reconstruct.offset_size(model)   return srcnn.offset_size(model)endfunction reconstruct.has_resize(model)   return srcnn.scale_factor(model) > 1endfunction reconstruct.inner_scale(model)   return srcnn.scale_factor(model)endlocal function padding_params(x, model, block_size)   local p = {}   local offset = reconstruct.offset_size(model)   p.x_w = x:size(3)   p.x_h = x:size(2)   p.inner_scale = reconstruct.inner_scale(model)   local input_offset = math.ceil(offset / p.inner_scale)   local input_block_size = block_size   local process_size = input_block_size - input_offset * 2   local h_blocks = math.floor(p.x_h / process_size) +      ((p.x_h % process_size == 0 and 0) or 1)   local w_blocks = math.floor(p.x_w / process_size) +      ((p.x_w % process_size == 0 and 0) or 1)   local h = (h_blocks * process_size) + input_offset * 2   local w = (w_blocks * process_size) + input_offset * 2   p.pad_h1 = input_offset   p.pad_w1 = input_offset   p.pad_h2 = (h - input_offset) - p.x_h   p.pad_w2 = (w - input_offset) - p.x_w   return pendfunction reconstruct.image_y(model, x, offset, block_size, batch_size)   block_size = block_size or 128   local p = padding_params(x, model, block_size)   x = image.rgb2yuv(iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2))   local y = reconstruct_nn(model, x[1], p.inner_scale, offset, block_size, batch_size)   x = iproc.crop(x, p.pad_w1, p.pad_w2, p.pad_w1 + p.x_w, p.pad_w2 + p.x_h)   y = iproc.crop(y, 0, 0, p.x_w, p.x_h)   y[torch.lt(y, 0)] = 0   y[torch.gt(y, 1)] = 1   x[1]:copy(y)   local output = image.yuv2rgb(x)   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   x = nil   y = nil   collectgarbage()      return outputendfunction reconstruct.scale_y(model, scale, x, offset, block_size, batch_size)   block_size = block_size or 128   local x_lanczos   if reconstruct.has_resize(model) then      x_lanczos = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Lanczos")   else      x_lanczos = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Lanczos")      x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")   end   local p = padding_params(x, model, block_size)   if p.x_w * p.x_h > 2048*2048 then      collectgarbage()   end   x = image.rgb2yuv(iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2))   x_lanczos = image.rgb2yuv(x_lanczos)   local y = reconstruct_nn(model, x[1], p.inner_scale, offset, block_size, batch_size)   y = iproc.crop(y, 0, 0, p.x_w * p.inner_scale, p.x_h * p.inner_scale)   y[torch.lt(y, 0)] = 0   y[torch.gt(y, 1)] = 1   x_lanczos[1]:copy(y)   local output = image.yuv2rgb(x_lanczos)   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   x = nil   x_lanczos = nil   y = nil   collectgarbage()      return outputendfunction reconstruct.image_rgb(model, x, offset, block_size, batch_size)   block_size = block_size or 128   local p = padding_params(x, model, block_size)   x = iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2)   if p.x_w * p.x_h > 2048*2048 then      collectgarbage()   end   local y = reconstruct_nn(model, x, p.inner_scale, offset, block_size, batch_size)   local output = iproc.crop(y, 0, 0, p.x_w, p.x_h)   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   x = nil   y = nil   collectgarbage()   return outputendfunction reconstruct.scale_rgb(model, scale, x, offset, block_size, batch_size)   block_size = block_size or 128   if not reconstruct.has_resize(model) then      x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")   end   local p = padding_params(x, model, block_size)   x = iproc.padding(x, p.pad_w1, p.pad_w2, p.pad_h1, p.pad_h2)   if p.x_w * p.x_h > 2048*2048 then      collectgarbage()   end   local y   y = reconstruct_nn(model, x, p.inner_scale, offset, block_size, batch_size)   local output = iproc.crop(y, 0, 0, p.x_w * p.inner_scale, p.x_h * p.inner_scale)   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   x = nil   y = nil   collectgarbage()   return outputendfunction reconstruct.image(model, x, block_size)   local i2rgb = false   if x:size(1) == 1 then      local new_x = torch.Tensor(3, x:size(2), x:size(3))      new_x[1]:copy(x)      new_x[2]:copy(x)      new_x[3]:copy(x)      x = new_x      i2rgb = true   end   if reconstruct.is_rgb(model) then      x = reconstruct.image_rgb(model, x,				reconstruct.offset_size(model), block_size)   else      x = reconstruct.image_y(model, x,			      reconstruct.offset_size(model), block_size)   end   if i2rgb then      x = image.rgb2y(x)   end   return xendfunction reconstruct.scale(model, scale, x, block_size)   local i2rgb = false   if x:size(1) == 1 then      local new_x = torch.Tensor(3, x:size(2), x:size(3))      new_x[1]:copy(x)      new_x[2]:copy(x)      new_x[3]:copy(x)      x = new_x      i2rgb = true   end   if reconstruct.is_rgb(model) then      x = reconstruct.scale_rgb(model, scale, x,				reconstruct.offset_size(model),				block_size)   else      x = reconstruct.scale_y(model, scale, x,			      reconstruct.offset_size(model),			      block_size)   end   if i2rgb then      x = image.rgb2y(x)   end   return xendlocal function tr_f(a)   return a:transpose(2, 3):contiguous() endlocal function itr_f(a)   return a:transpose(2, 3):contiguous()endlocal augmented_patterns = {   {      forward = function (a) return a end,      backward = function (a) return a end   },   {      forward = function (a) return image.hflip(a) end,      backward = function (a) return image.hflip(a) end   },   {      forward = function (a) return image.vflip(a) end,      backward = function (a) return image.vflip(a) end   },   {      forward = function (a) return image.hflip(image.vflip(a)) end,      backward = function (a) return image.vflip(image.hflip(a)) end   },   {      forward = function (a) return tr_f(a) end,      backward = function (a) return itr_f(a) end   },   {      forward = function (a) return image.hflip(tr_f(a)) end,      backward = function (a) return itr_f(image.hflip(a)) end   },   {      forward = function (a) return image.vflip(tr_f(a)) end,      backward = function (a) return itr_f(image.vflip(a)) end   },   {      forward = function (a) return image.hflip(image.vflip(tr_f(a))) end,      backward = function (a) return itr_f(image.vflip(image.hflip(a))) end   }}local function get_augmented_patterns(n)   if n == 1 then      -- no tta      return {augmented_patterns[1]}   elseif n == 2 then      return {augmented_patterns[1], augmented_patterns[5]}   elseif n == 4 then      return {augmented_patterns[1], augmented_patterns[5],	      augmented_patterns[2], augmented_patterns[7]}   elseif n == 8 then      return augmented_patterns   else      error("unsupported TTA level: " .. n)   endendlocal function tta(f, n, model, x, block_size)   local average = nil   local offset = reconstruct.offset_size(model)   local augments = get_augmented_patterns(n)   for i = 1, #augments do       local out = augments[i].backward(f(model, augments[i].forward(x), offset, block_size))      if not average then	 average = out      else	 average:add(out)      end   end   return average:div(#augments)endfunction reconstruct.image_tta(model, n, x, block_size)   if reconstruct.is_rgb(model) then      return tta(reconstruct.image_rgb, n, model, x, block_size)   else      return tta(reconstruct.image_y, n, model, x, block_size)   endendfunction reconstruct.scale_tta(model, n, scale, x, block_size)   if reconstruct.is_rgb(model) then      local f = function (model, x, offset, block_size)	 return reconstruct.scale_rgb(model, scale, x, offset, block_size)      end      return tta(f, n, model, x, block_size)   else      local f = function (model, x, offset, block_size)	 return reconstruct.scale_y(model, scale, x, offset, block_size)      end      return tta(f, n, model, x, block_size)   endendreturn reconstruct
 |