123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- require 'image'
- local gm = require 'graphicsmagick'
- local iproc = require 'iproc'
- local data_augmentation = require 'data_augmentation'
- local pairwise_transform = {}
- local function random_half(src, p)
- if torch.uniform() < p then
- local filter = ({"Box","Box","Blackman","Sinc","Lanczos", "Catrom"})[torch.random(1, 6)]
- return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)
- else
- return src
- end
- end
- local function crop_if_large(src, max_size)
- local tries = 4
- if src:size(2) > max_size and src:size(3) > max_size then
- local rect
- for i = 1, tries do
- local yi = torch.random(0, src:size(2) - max_size)
- local xi = torch.random(0, src:size(3) - max_size)
- rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
- -- ignore simple background
- if rect:float():std() >= 0 then
- break
- end
- end
- return rect
- else
- return src
- end
- end
- local function preprocess(src, crop_size, options)
- local dest = src
- dest = random_half(dest, options.random_half_rate)
- dest = crop_if_large(dest, math.max(crop_size * 2, options.max_size))
- dest = data_augmentation.flip(dest)
- dest = data_augmentation.color_noise(dest, options.random_color_noise_rate)
- dest = data_augmentation.overlay(dest, options.random_overlay_rate)
- dest = data_augmentation.unsharp_mask(dest, options.random_unsharp_mask_rate)
- dest = data_augmentation.shift_1px(dest)
-
- return dest
- end
- local function active_cropping(x, y, size, p, tries)
- assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))
- local r = torch.uniform()
- local t = "float"
- if x:type() == "torch.ByteTensor" then
- t = "byte"
- end
- if p < r then
- local xi = torch.random(0, y:size(3) - (size + 1))
- local yi = torch.random(0, y:size(2) - (size + 1))
- local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
- local yc = iproc.crop(y, xi, yi, xi + size, yi + size)
- return xc, yc
- else
- local lowres = gm.Image(x, "RGB", "DHW"):
- size(x:size(3) * 0.5, x:size(2) * 0.5, "Box"):
- size(x:size(3), x:size(2), "Box"):
- toTensor(t, "RGB", "DHW")
- local best_se = 0.0
- local best_xc, best_yc
- local m = torch.FloatTensor(x:size(1), size, size)
- for i = 1, tries do
- local xi = torch.random(0, y:size(3) - (size + 1))
- local yi = torch.random(0, y:size(2) - (size + 1))
- local xc = iproc.crop(x, xi, yi, xi + size, yi + size)
- local lc = iproc.crop(lowres, xi, yi, xi + size, yi + size)
- local xcf = iproc.byte2float(xc)
- local lcf = iproc.byte2float(lc)
- local se = m:copy(xcf):add(-1.0, lcf):pow(2):sum()
- if se >= best_se then
- best_xc = xcf
- best_yc = iproc.byte2float(iproc.crop(y, xi, yi, xi + size, yi + size))
- best_se = se
- end
- end
- return best_xc, best_yc
- end
- end
- function pairwise_transform.scale(src, scale, size, offset, n, options)
- local filters;
- if options.style == "photo" then
- filters = {
- "Box", "lanczos", "Catrom"
- }
- else
- filters = {
- "Box","Box", -- 0.012756949974688
- "Blackman", -- 0.013191924552285
- --"Catrom", -- 0.013753536746706
- --"Hanning", -- 0.013761314529647
- --"Hermite", -- 0.013850225205266
- "Sinc", -- 0.014095824314306
- "Lanczos", -- 0.014244299255442
- }
- end
- local unstable_region_offset = 8
- local downscale_filter = filters[torch.random(1, #filters)]
- local y = preprocess(src, size, options)
- assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)
- local down_scale = 1.0 / scale
- local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,
- y:size(2) * down_scale, downscale_filter),
- y:size(3), y:size(2))
- x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
- x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
- y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
- y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
- assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
- assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
-
- local batch = {}
- for i = 1, n do
- local xc, yc = active_cropping(x, y,
- size,
- options.active_cropping_rate,
- options.active_cropping_tries)
- xc = iproc.byte2float(xc)
- yc = iproc.byte2float(yc)
- if options.rgb then
- else
- yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
- xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
- end
- table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
- end
- return batch
- end
- function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
- local unstable_region_offset = 8
- local y = preprocess(src, size, options)
- local x = y
- for i = 1, #quality do
- x = gm.Image(x, "RGB", "DHW")
- x:format("jpeg"):depth(8)
- if torch.uniform() < options.jpeg_chroma_subsampling_rate then
- -- YUV 420
- x:samplingFactors({2.0, 1.0, 1.0})
- else
- -- YUV 444
- x:samplingFactors({1.0, 1.0, 1.0})
- end
- local blob, len = x:toBlob(quality[i])
- x:fromBlob(blob, len)
- x = x:toTensor("byte", "RGB", "DHW")
- end
- x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
- x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
- y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
- y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
- assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
- assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
-
- local batch = {}
- for i = 1, n do
- local xc, yc = active_cropping(x, y, size,
- options.active_cropping_rate,
- options.active_cropping_tries)
- xc = iproc.byte2float(xc)
- yc = iproc.byte2float(yc)
- if options.rgb then
- else
- yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))
- xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))
- end
- if torch.uniform() < options.nr_rate then
- -- reducing noise
- table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
- else
- -- ratain useful details
- table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
- end
- end
- return batch
- end
- function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
- if style == "art" then
- if level == 1 then
- return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
- size, offset, n, options)
- elseif level == 2 then
- local r = torch.uniform()
- if r > 0.6 then
- return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
- size, offset, n, options)
- elseif r > 0.3 then
- local quality1 = torch.random(37, 70)
- local quality2 = quality1 - torch.random(5, 10)
- return pairwise_transform.jpeg_(src, {quality1, quality2},
- size, offset, n, options)
- else
- local quality1 = torch.random(52, 70)
- local quality2 = quality1 - torch.random(5, 15)
- local quality3 = quality1 - torch.random(15, 25)
-
- return pairwise_transform.jpeg_(src,
- {quality1, quality2, quality3},
- size, offset, n, options)
- end
- else
- error("unknown noise level: " .. level)
- end
- elseif style == "photo" then
- -- level adjusting by -nr_rate
- return pairwise_transform.jpeg_(src, {torch.random(30, 70)},
- size, offset, n,
- options)
- else
- error("unknown style: " .. style)
- end
- end
- function pairwise_transform.test_jpeg(src)
- torch.setdefaulttensortype("torch.FloatTensor")
- local options = {random_color_noise_rate = 0.5,
- random_half_rate = 0.5,
- random_overlay_rate = 0.5,
- random_unsharp_mask_rate = 0.5,
- jpeg_chroma_subsampling_rate = 0.5,
- nr_rate = 1.0,
- active_cropping_rate = 0.5,
- active_cropping_tries = 10,
- max_size = 256,
- rgb = true
- }
- local image = require 'image'
- local src = image.lena()
- for i = 1, 9 do
- local xy = pairwise_transform.jpeg(src,
- "art",
- torch.random(1, 2),
- 128, 7, 1, options)
- image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
- image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
- end
- end
- function pairwise_transform.test_scale(src)
- torch.setdefaulttensortype("torch.FloatTensor")
- local options = {random_color_noise_rate = 0.5,
- random_half_rate = 0.5,
- random_overlay_rate = 0.5,
- random_unsharp_mask_rate = 0.5,
- active_cropping_rate = 0.5,
- active_cropping_tries = 10,
- max_size = 256,
- rgb = true
- }
- local image = require 'image'
- local src = image.lena()
- for i = 1, 10 do
- local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)
- image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})
- image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})
- end
- end
- return pairwise_transform
|