123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
- require 'pl'
- require 'image'
- local compression = require 'compression'
- local settings = require 'settings'
- local image_loader = require 'image_loader'
- local iproc = require 'iproc'
- local function crop_if_large(src, max_size)
- local tries = 4
- if src:size(2) >= max_size and src:size(3) >= max_size then
- local rect
- for i = 1, tries do
- local yi = torch.random(0, src:size(2) - max_size)
- local xi = torch.random(0, src:size(3) - max_size)
- rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
- -- ignore simple background
- if rect:float():std() >= 0 then
- break
- end
- end
- return rect
- else
- return src
- end
- end
- local function load_images(list)
- local MARGIN = 32
- local lines = utils.split(file.read(list), "\n")
- local x = {}
- for i = 1, #lines do
- local line = lines[i]
- local im, meta = image_loader.load_byte(line)
- if meta and meta.alpha then
- io.stderr:write(string.format("\n%s: skip: image has alpha channel.\n", line))
- else
- if settings.max_training_image_size > 0 then
- im = crop_if_large(im, settings.max_training_image_size)
- end
- im = iproc.crop_mod4(im)
- local scale = 1.0
- if settings.random_half_rate > 0.0 then
- scale = 2.0
- end
- if im then
- if im:size(2) > (settings.crop_size * scale + MARGIN) and im:size(3) > (settings.crop_size * scale + MARGIN) then
- table.insert(x, compression.compress(im))
- else
- io.stderr:write(string.format("\n%s: skip: image is too small (%d > size).\n", line, settings.crop_size * scale + MARGIN))
- end
- else
- io.stderr:write(string.format("\n%s: skip: load error.\n", line))
- end
- end
- xlua.progress(i, #lines)
- if i % 10 == 0 then
- collectgarbage()
- end
- end
- return x
- end
- torch.manualSeed(settings.seed)
- print(settings)
- local x = load_images(settings.image_list)
- torch.save(settings.images, x)
|