pairwise_transform_jpeg.lua 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. local pairwise_utils = require 'pairwise_transform_utils'
  2. local gm = {}
  3. gm.Image = require 'graphicsmagick.Image'
  4. local iproc = require 'iproc'
  5. local pairwise_transform = {}
  6. function pairwise_transform.jpeg_(src, quality, size, offset, n, options)
  7. local unstable_region_offset = 8
  8. local y = pairwise_utils.preprocess(src, size, options)
  9. local x = y
  10. local factors
  11. if torch.uniform() < options.jpeg_chroma_subsampling_rate then
  12. -- YUV 420
  13. factors = {2.0, 1.0, 1.0}
  14. else
  15. -- YUV 444
  16. factors = {1.0, 1.0, 1.0}
  17. end
  18. for i = 1, #quality do
  19. x = gm.Image(x, "RGB", "DHW")
  20. local blob, len = x:format("jpeg"):depth(8):samplingFactors(factors):toBlob(quality[i])
  21. x:fromBlob(blob, len)
  22. x = x:toTensor("byte", "RGB", "DHW")
  23. end
  24. x = iproc.crop(x, unstable_region_offset, unstable_region_offset,
  25. x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)
  26. y = iproc.crop(y, unstable_region_offset, unstable_region_offset,
  27. y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)
  28. assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)
  29. assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))
  30. local batch = {}
  31. local lowres_y = pairwise_utils.low_resolution(y)
  32. local xs, ys, ls = pairwise_utils.flip_augmentation(x, y, lowres_y)
  33. for i = 1, n do
  34. local t = (i % #xs) + 1
  35. local xc, yc = pairwise_utils.active_cropping(xs[t], ys[t], ls[t], size, 1,
  36. options.active_cropping_rate,
  37. options.active_cropping_tries)
  38. xc = iproc.byte2float(xc)
  39. yc = iproc.byte2float(yc)
  40. if options.rgb then
  41. else
  42. if xc:size(1) > 1 then
  43. yc = iproc.rgb2y(yc)
  44. xc = iproc.rgb2y(xc)
  45. end
  46. end
  47. if torch.uniform() < options.nr_rate then
  48. -- reducing noise
  49. table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  50. else
  51. -- ratain useful details
  52. table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})
  53. end
  54. end
  55. return batch
  56. end
  57. function pairwise_transform.jpeg(src, style, level, size, offset, n, options)
  58. if style == "art" then
  59. if level == 0 then
  60. return pairwise_transform.jpeg_(src, {torch.random(85, 95)},
  61. size, offset, n, options)
  62. elseif level == 1 then
  63. return pairwise_transform.jpeg_(src, {torch.random(65, 85)},
  64. size, offset, n, options)
  65. elseif level == 2 or level == 3 then
  66. -- level 2/3 adjusting by -nr_rate. for level3, -nr_rate=1
  67. local r = torch.uniform()
  68. if r > 0.4 then
  69. return pairwise_transform.jpeg_(src, {torch.random(27, 70)},
  70. size, offset, n, options)
  71. elseif r > 0.1 then
  72. local quality1 = torch.random(37, 70)
  73. local quality2 = quality1 - torch.random(5, 10)
  74. return pairwise_transform.jpeg_(src, {quality1, quality2},
  75. size, offset, n, options)
  76. else
  77. local quality1 = torch.random(52, 70)
  78. local quality2 = quality1 - torch.random(5, 15)
  79. local quality3 = quality1 - torch.random(15, 25)
  80. return pairwise_transform.jpeg_(src,
  81. {quality1, quality2, quality3},
  82. size, offset, n, options)
  83. end
  84. else
  85. error("unknown noise level: " .. level)
  86. end
  87. elseif style == "photo" then
  88. if level == 0 then
  89. return pairwise_transform.jpeg_(src, {torch.random(85, 95)},
  90. size, offset, n,
  91. options)
  92. else
  93. return pairwise_transform.jpeg_(src, {torch.random(37, 70)},
  94. size, offset, n,
  95. options)
  96. end
  97. else
  98. error("unknown style: " .. style)
  99. end
  100. end
  101. function pairwise_transform.test_jpeg(src)
  102. torch.setdefaulttensortype("torch.FloatTensor")
  103. local options = {random_color_noise_rate = 0.5,
  104. random_half_rate = 0.5,
  105. random_overlay_rate = 0.5,
  106. random_unsharp_mask_rate = 0.5,
  107. jpeg_chroma_subsampling_rate = 0.5,
  108. nr_rate = 1.0,
  109. active_cropping_rate = 0.5,
  110. active_cropping_tries = 10,
  111. max_size = 256,
  112. rgb = true
  113. }
  114. local image = require 'image'
  115. local src = image.lena()
  116. for i = 1, 9 do
  117. local xy = pairwise_transform.jpeg(src,
  118. "art",
  119. torch.random(1, 2),
  120. 128, 7, 1, options)
  121. image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})
  122. image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})
  123. end
  124. end
  125. return pairwise_transform