| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700 | require 'w2nn'-- ref: https://arxiv.org/abs/1502.01852-- ref: https://arxiv.org/abs/1501.00092-- ref: https://arxiv.org/abs/1709.01507-- ref: https://arxiv.org/abs/1505.04597local srcnn = {}local function msra_filler(mod)   local fin = mod.kW * mod.kH * mod.nInputPlane   local fout = mod.kW * mod.kH * mod.nOutputPlane   stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))   mod.weight:normal(0, stdv)   mod.bias:zero()endlocal function identity_filler(mod)   assert(mod.nInputPlane <= mod.nOutputPlane)   mod.weight:normal(0, 0.01)   mod.bias:zero()   local num_groups = mod.nInputPlane -- fixed   local filler_value = num_groups / mod.nOutputPlane   local in_group_size = math.floor(mod.nInputPlane / num_groups)   local out_group_size = math.floor(mod.nOutputPlane / num_groups)   local x = math.floor(mod.kW / 2)   local y = math.floor(mod.kH / 2)   for i = 0, num_groups - 1 do      for j = i * out_group_size, (i + 1) * out_group_size - 1 do	 for k = i * in_group_size, (i + 1) * in_group_size - 1 do	    mod.weight[j+1][k+1][y+1][x+1] = filler_value	 end      end   endendfunction nn.SpatialConvolutionMM:reset(stdv)   msra_filler(self)endfunction nn.SpatialFullConvolution:reset(stdv)   msra_filler(self)endfunction nn.SpatialDilatedConvolution:reset(stdv)   identity_filler(self)endif cudnn and cudnn.SpatialConvolution then   function cudnn.SpatialConvolution:reset(stdv)      msra_filler(self)   end   function cudnn.SpatialFullConvolution:reset(stdv)      msra_filler(self)   end   if cudnn.SpatialDilatedConvolution then      function cudnn.SpatialDilatedConvolution:reset(stdv)	 identity_filler(self)      end   endendfunction nn.SpatialConvolutionMM:clearState()   if self.gradWeight then      self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()   end   if self.gradBias then      self.gradBias:resize(self.nOutputPlane):zero()   end   return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')endfunction srcnn.channels(model)   if model.w2nn_channels ~= nil then      return model.w2nn_channels   else      return model:get(model:size() - 1).weight:size(1)   endendfunction srcnn.backend(model)   local conv = model:findModules("cudnn.SpatialConvolution")   local fullconv = model:findModules("cudnn.SpatialFullConvolution")   if #conv > 0 or #fullconv > 0 then      return "cudnn"   else      return "cunn"   endendfunction srcnn.color(model)   local ch = srcnn.channels(model)   if ch == 3 then      return "rgb"   else      return "y"   endendfunction srcnn.name(model)   if model.w2nn_arch_name ~= nil then      return model.w2nn_arch_name   else      local conv = model:findModules("nn.SpatialConvolutionMM")      if #conv == 0 then	 conv = model:findModules("cudnn.SpatialConvolution")      end      if #conv == 7 then	 return "vgg_7"      elseif #conv == 12 then	 return "vgg_12"      else	 error("unsupported model")      end   endendfunction srcnn.offset_size(model)   if model.w2nn_offset ~= nil then      return model.w2nn_offset   else      local name = srcnn.name(model)      if name:match("vgg_") then	 local conv = model:findModules("nn.SpatialConvolutionMM")	 if #conv == 0 then	    conv = model:findModules("cudnn.SpatialConvolution")	 end	 local offset = 0	 for i = 1, #conv do	    offset = offset + (conv[i].kW - 1) / 2	 end	 return math.floor(offset)      else	 error("unsupported model")      end   endendfunction srcnn.scale_factor(model)   if model.w2nn_scale_factor ~= nil then      return model.w2nn_scale_factor   else      local name = srcnn.name(model)      if name == "upconv_7" then	 return 2      elseif name == "upconv_8_4x" then	 return 4      else	 return 1      end   endendlocal function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)   if backend == "cunn" then      return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)   elseif backend == "cudnn" then      return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)   else      error("unsupported backend:" .. backend)   endendsrcnn.SpatialConvolution = SpatialConvolutionlocal function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)   if backend == "cunn" then      return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)   elseif backend == "cudnn" then      return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)   else      error("unsupported backend:" .. backend)   endendsrcnn.SpatialFullConvolution = SpatialFullConvolutionlocal function ReLU(backend)   if backend == "cunn" then      return nn.ReLU(true)   elseif backend == "cudnn" then      return cudnn.ReLU(true)   else      error("unsupported backend:" .. backend)   endendsrcnn.ReLU = ReLUlocal function Sigmoid(backend)   if backend == "cunn" then      return nn.Sigmoid(true)   elseif backend == "cudnn" then      return cudnn.Sigmoid(true)   else      error("unsupported backend:" .. backend)   endendsrcnn.ReLU = ReLUlocal function SpatialMaxPooling(backend, kW, kH, dW, dH, padW, padH)   if backend == "cunn" then      return nn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)   elseif backend == "cudnn" then      return cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)   else      error("unsupported backend:" .. backend)   endendsrcnn.SpatialMaxPooling = SpatialMaxPoolinglocal function SpatialAveragePooling(backend, kW, kH, dW, dH, padW, padH)   if backend == "cunn" then      return nn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)   elseif backend == "cudnn" then      return cudnn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)   else      error("unsupported backend:" .. backend)   endendsrcnn.SpatialAveragePooling = SpatialAveragePoolinglocal function SpatialDilatedConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)         if backend == "cunn" then      return nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)   elseif backend == "cudnn" then      if cudnn.SpatialDilatedConvolution then	 -- cudnn v 6	 return cudnn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)      else	 return nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, dilationW, dilationH)      end   else      error("unsupported backend:" .. backend)   endendsrcnn.SpatialDilatedConvolution = SpatialDilatedConvolutionlocal function GlobalAveragePooling(n_output)   local gap = nn.Sequential()   gap:add(nn.Mean(-1, -1)):add(nn.Mean(-1, -1))   gap:add(nn.View(-1, n_output, 1, 1))   return gapendsrcnn.GlobalAveragePooling = GlobalAveragePooling-- Squeeze and Excitation Blocklocal function SEBlock(backend, n_output, r)   local con = nn.ConcatTable(2)   local attention = nn.Sequential()   local n_mid = math.floor(n_output / r)   attention:add(GlobalAveragePooling(n_output))   attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))   attention:add(nn.ReLU(true))   attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))   attention:add(nn.Sigmoid(true)) -- don't use cudnn sigmoid    con:add(nn.Identity())   con:add(attention)   return conendlocal function SpatialSEBlock(backend, ave_size, n_output, r)   local con = nn.ConcatTable(2)   local attention = nn.Sequential()   local n_mid = math.floor(n_output / r)   attention:add(SpatialAveragePooling(backend, ave_size, ave_size, ave_size, ave_size))   attention:add(SpatialConvolution(backend, n_output, n_mid, 1, 1, 1, 1, 0, 0))   attention:add(nn.ReLU(true))   attention:add(SpatialConvolution(backend, n_mid, n_output, 1, 1, 1, 1, 0, 0))   attention:add(nn.Sigmoid(true))   attention:add(nn.SpatialUpSamplingNearest(ave_size, ave_size))   con:add(nn.Identity())   con:add(attention)   return conendlocal function ResBlock(backend, i, o)   local seq = nn.Sequential()   local con = nn.ConcatTable()   local conv = nn.Sequential()   conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))   conv:add(nn.LeakyReLU(0.1, true))   conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))   conv:add(nn.LeakyReLU(0.1, true))   con:add(conv)   if i == o then      con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding   else      local seq = nn.Sequential()      seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))      seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))      con:add(seq)   end   seq:add(con)   seq:add(nn.CAddTable())   return seqendlocal function ResBlockSE(backend, i, o)   local seq = nn.Sequential()   local con = nn.ConcatTable()   local conv = nn.Sequential()   conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 0, 0))   conv:add(nn.LeakyReLU(0.1, true))   conv:add(SpatialConvolution(backend, o, o, 3, 3, 1, 1, 0, 0))   conv:add(nn.LeakyReLU(0.1, true))   conv:add(SEBlock(backend, o, 8))   conv:add(w2nn.ScaleTable())   con:add(conv)   if i == o then      con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding   else      local seq = nn.Sequential()      seq:add(SpatialConvolution(backend, i, o, 1, 1, 1, 1, 0, 0))      seq:add(nn.SpatialZeroPadding(-2, -2, -2, -2))      con:add(seq)   end   seq:add(con)   seq:add(nn.CAddTable())   return seqendlocal function ResGroup(backend, n, n_output)   local seq = nn.Sequential()   local res = nn.Sequential()   local con = nn.ConcatTable(2)   local depad = -2 * n   for i = 1, n do      res:add(ResBlock(backend, n_output, n_output))   end   con:add(res)   con:add(nn.SpatialZeroPadding(depad, depad, depad, depad))   seq:add(con)   seq:add(nn.CAddTable())   return seqendlocal function ResGroupSE(backend, n, n_output)   local seq = nn.Sequential()   local res = nn.Sequential()   local con = nn.ConcatTable(2)   local depad = -2 * n   for i = 1, n do      res:add(ResBlockSE(backend, n_output, n_output))   end   con:add(res)   con:add(nn.SpatialZeroPadding(depad, depad, depad, depad))   seq:add(con)   seq:add(nn.CAddTable())   return seqend-- VGG style net(7 layers)function srcnn.vgg_7(backend, ch)   local model = nn.Sequential()   model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))   model:add(w2nn.InplaceClip01())   model:add(nn.View(-1):setNumInputDims(3))   model.w2nn_arch_name = "vgg_7"   model.w2nn_offset = 7   model.w2nn_scale_factor = 1   model.w2nn_channels = ch      return modelend-- Upconvolutionfunction srcnn.upconv_7(backend, ch)   local model = nn.Sequential()   model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())   model:add(w2nn.InplaceClip01())   model:add(nn.View(-1):setNumInputDims(3))   model.w2nn_arch_name = "upconv_7"   model.w2nn_offset = 14   model.w2nn_scale_factor = 2   model.w2nn_resize = true   model.w2nn_channels = ch   return modelend-- large version of upconv_7-- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.function srcnn.upconv_7l(backend, ch)   local model = nn.Sequential()   model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())   model:add(w2nn.InplaceClip01())   model:add(nn.View(-1):setNumInputDims(3))   model.w2nn_arch_name = "upconv_7l"   model.w2nn_offset = 14   model.w2nn_scale_factor = 2   model.w2nn_resize = true   model.w2nn_channels = ch   return modelendfunction srcnn.resnet_14l(backend, ch)   local model = nn.Sequential()   model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(ResBlock(backend, 32, 64))   model:add(ResBlock(backend, 64, 64))   model:add(ResBlock(backend, 64, 128))   model:add(ResBlock(backend, 128, 128))   model:add(ResBlock(backend, 128, 256))   model:add(ResBlock(backend, 256, 256))   model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())   model:add(w2nn.InplaceClip01())   model:add(nn.View(-1):setNumInputDims(3))   model.w2nn_arch_name = "resnet_14l"   model.w2nn_offset = 28   model.w2nn_scale_factor = 2   model.w2nn_resize = true   model.w2nn_channels = ch   return modelend-- ResNet with SEBlock for fast conversionfunction srcnn.upresnet_s(backend, ch)   local model = nn.Sequential()   model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(ResGroupSE(backend, 3, 64))   model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3):noBias())   model:add(w2nn.InplaceClip01())   model.w2nn_arch_name = "upresnet_s"   model.w2nn_offset = 18   model.w2nn_scale_factor = 2   model.w2nn_resize = true   model.w2nn_channels = ch   return modelend-- for segmentationfunction srcnn.fcn_v1(backend, ch)   -- input_size = 120   local model = nn.Sequential()   --i = 120   --model:cuda()   --print(model:forward(torch.Tensor(32, ch, i, i):uniform():cuda()):size())   model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))   model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))   model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))   model:add(SpatialConvolution(backend, 128, 256, 1, 1, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(nn.Dropout(0.5, false, true))   model:add(SpatialFullConvolution(backend, 256, 128, 2, 2, 2, 2, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialFullConvolution(backend, 128, 128, 2, 2, 2, 2, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 128, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialFullConvolution(backend, 64, 64, 2, 2, 2, 2, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, 64, 32, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 3, 3))   model:add(w2nn.InplaceClip01())   model:add(nn.View(-1):setNumInputDims(3))   model.w2nn_arch_name = "fcn_v1"   model.w2nn_offset = 36   model.w2nn_scale_factor = 1   model.w2nn_channels = ch   model.w2nn_input_size = 120   --model.w2nn_gcn = true      return modelend-- Cascaded Residual U-Net with SEBlock-- unet utils adapted from https://gist.github.com/toshi-k/ca75e614f1ac12fa44f62014ac1d6465local function unet_conv(backend, n_input, n_middle, n_output, se)   local model = nn.Sequential()   model:add(SpatialConvolution(backend, n_input, n_middle, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   model:add(SpatialConvolution(backend, n_middle, n_output, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1, true))   if se then      model:add(SEBlock(backend, n_output, 8))      model:add(w2nn.ScaleTable())   end   return modelendlocal function unet_branch(backend, insert, backend, n_input, n_output, depad)   local block = nn.Sequential()   local con = nn.ConcatTable(2)   local model = nn.Sequential()      block:add(SpatialConvolution(backend, n_input, n_input, 2, 2, 2, 2, 0, 0))-- downsampling   block:add(nn.LeakyReLU(0.1, true))   block:add(insert)   block:add(SpatialFullConvolution(backend, n_output, n_output, 2, 2, 2, 2, 0, 0))-- upsampling   block:add(nn.LeakyReLU(0.1, true))   con:add(block)   con:add(nn.SpatialZeroPadding(-depad, -depad, -depad, -depad))   model:add(con)   model:add(nn.CAddTable())   return modelendlocal function cunet_unet1(backend, ch, deconv)   local block1 = unet_conv(backend, 64, 128, 64, true)   local model = nn.Sequential()   model:add(unet_conv(backend, ch, 32, 64, false))   model:add(unet_branch(backend, block1, backend, 64, 64, 4))   model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   if deconv then	 model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))   else      model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))   end   return modelendlocal function cunet_unet2(backend, ch, deconv)   local block1 = unet_conv(backend, 128, 256, 128, true)   local block2 = nn.Sequential()   block2:add(unet_conv(backend, 64, 64, 128, true))   block2:add(unet_branch(backend, block1, backend, 128, 128, 4))   block2:add(unet_conv(backend, 128, 64, 64, true))   local model = nn.Sequential()   model:add(unet_conv(backend, ch, 32, 64, false))   model:add(unet_branch(backend, block2, backend, 64, 64, 16))   model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))   model:add(nn.LeakyReLU(0.1))   if deconv then      model:add(SpatialFullConvolution(backend, 64, ch, 4, 4, 2, 2, 3, 3))   else      model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))   end   return modelend-- 2xfunction srcnn.upcunet(backend, ch)   local model = nn.Sequential()   local con = nn.ConcatTable()   local aux_con = nn.ConcatTable()   -- 2 cascade   model:add(cunet_unet1(backend, ch, true))   con:add(cunet_unet2(backend, ch, false))   con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))   aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output   aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output   model:add(con)   model:add(aux_con)   model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output   model.w2nn_arch_name = "upcunet"   model.w2nn_offset = 36   model.w2nn_scale_factor = 2   model.w2nn_channels = ch   model.w2nn_resize = true   model.w2nn_valid_input_size = {}   for i = 76, 512, 4 do      table.insert(model.w2nn_valid_input_size, i)   end   return modelend-- 1xfunction srcnn.cunet(backend, ch)   local model = nn.Sequential()   local con = nn.ConcatTable()   local aux_con = nn.ConcatTable()   -- 2 cascade   model:add(cunet_unet1(backend, ch, false))   con:add(cunet_unet2(backend, ch, false))   con:add(nn.SpatialZeroPadding(-20, -20, -20, -20))   aux_con:add(nn.Sequential():add(nn.CAddTable()):add(w2nn.InplaceClip01())) -- cascaded unet output   aux_con:add(nn.Sequential():add(nn.SelectTable(2)):add(w2nn.InplaceClip01())) -- single unet output   model:add(con)   model:add(aux_con)   model:add(w2nn.AuxiliaryLossTable(1)) -- auxiliary loss for single unet output      model.w2nn_arch_name = "cunet"   model.w2nn_offset = 28   model.w2nn_scale_factor = 1   model.w2nn_channels = ch   model.w2nn_resize = false   model.w2nn_valid_input_size = {}   for i = 100, 512, 4 do      table.insert(model.w2nn_valid_input_size, i)   end   return modelendlocal function bench()   local sys = require 'sys'   cudnn.benchmark = true   local model = nil   local arch = {"upconv_7", "upcunet", "vgg_7", "cunet"}   local backend = "cudnn"   local ch = 3   local batch_size = 1   local output_size = 256   for k = 1, #arch do      model = srcnn[arch[k]](backend, ch):cuda()      model:evaluate()      local dummy = nil      local crop_size = nil      if model.w2nn_resize then	 crop_size = (output_size + model.w2nn_offset * 2) / 2      else	 crop_size = (output_size + model.w2nn_offset * 2)      end      local dummy = torch.Tensor(batch_size, ch, output_size, output_size):zero():cuda()      print(arch[k], output_size, crop_size)      -- warn      for i = 1, 4 do	 local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()	 model:forward(x)      end      t = sys.clock()      for i = 1, 10 do	 local x = torch.Tensor(batch_size, ch, crop_size, crop_size):uniform():cuda()	 local z = model:forward(x)	 dummy:add(z)      end      print(arch[k], sys.clock() - t)      model:clearState()   endendfunction srcnn.create(model_name, backend, color)   model_name = model_name or "vgg_7"   backend = backend or "cunn"   color = color or "rgb"   local ch = 3   if color == "rgb" then      ch = 3   elseif color == "y" then      ch = 1   else      error("unsupported color: " .. color)   end   if srcnn[model_name] then      local model = srcnn[model_name](backend, ch)      assert(model.w2nn_offset % model.w2nn_scale_factor == 0)      return model   else      error("unsupported model_name: " .. model_name)   endend--[[local model = srcnn.resnet_s("cunn", 3):cuda()print(model)model:training()print(model:forward(torch.Tensor(1, 3, 128, 128):zero():cuda()):size())bench()os.exit()--]]return srcnn
 |