| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 | require 'image'local iproc = require 'iproc'local function reconstruct_y(model, x, offset, block_size)   if x:dim() == 2 then      x = x:reshape(1, x:size(1), x:size(2))   end   local new_x = torch.Tensor():resizeAs(x):zero()   local output_size = block_size - offset * 2   local input = torch.CudaTensor(1, 1, block_size, block_size)      for i = 1, x:size(2), output_size do      for j = 1, x:size(3), output_size do	 if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then	    local index = {{},			   {i, i + block_size - 1},			   {j, j + block_size - 1}}	    input:copy(x[index])	    local output = model:forward(input):float():view(1, output_size, output_size)	    local output_index = {{},				  {i + offset, offset + i + output_size - 1},				  {offset + j, offset + j + output_size - 1}}	    new_x[output_index]:copy(output)	 end      end   end   return new_xendlocal function reconstruct_rgb(model, x, offset, block_size)   local new_x = torch.Tensor():resizeAs(x):zero()   local output_size = block_size - offset * 2   local input = torch.CudaTensor(1, 3, block_size, block_size)      for i = 1, x:size(2), output_size do      for j = 1, x:size(3), output_size do	 if i + block_size - 1 <= x:size(2) and j + block_size - 1 <= x:size(3) then	    local index = {{},			   {i, i + block_size - 1},			   {j, j + block_size - 1}}	    input:copy(x[index])	    local output = model:forward(input):float():view(3, output_size, output_size)	    local output_index = {{},				  {i + offset, offset + i + output_size - 1},				  {offset + j, offset + j + output_size - 1}}	    new_x[output_index]:copy(output)	 end      end   end   return new_xendlocal reconstruct = {}function reconstruct.is_rgb(model)   if model:get(model:size() - 1).weight:size(1) == 3 then      -- 3ch RGB      return true   else      -- 1ch Y      return false   endendfunction reconstruct.offset_size(model)   local conv = model:findModules("nn.SpatialConvolutionMM")   if #conv > 0 then      local offset = 0      for i = 1, #conv do	 offset = offset + (conv[i].kW - 1) / 2      end      return math.floor(offset)   else      conv = model:findModules("cudnn.SpatialConvolution")      local offset = 0      for i = 1, #conv do	 offset = offset + (conv[i].kW - 1) / 2      end      return math.floor(offset)   endendfunction reconstruct.image_y(model, x, offset, block_size)   block_size = block_size or 128   local output_size = block_size - offset * 2   local h_blocks = math.floor(x:size(2) / output_size) +      ((x:size(2) % output_size == 0 and 0) or 1)   local w_blocks = math.floor(x:size(3) / output_size) +      ((x:size(3) % output_size == 0 and 0) or 1)      local h = offset + h_blocks * output_size + offset   local w = offset + w_blocks * output_size + offset   local pad_h1 = offset   local pad_w1 = offset   local pad_h2 = (h - offset) - x:size(2)   local pad_w2 = (w - offset) - x:size(3)   local yuv = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))   local y = reconstruct_y(model, yuv[1], offset, block_size)   y[torch.lt(y, 0)] = 0   y[torch.gt(y, 1)] = 1   yuv[1]:copy(y)   local output = image.yuv2rgb(iproc.crop(yuv,					   pad_w1, pad_h1,					   yuv:size(3) - pad_w2, yuv:size(2) - pad_h2))   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   collectgarbage()      return outputendfunction reconstruct.scale_y(model, scale, x, offset, block_size)   block_size = block_size or 128   local x_lanczos = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Lanczos")   x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")   local output_size = block_size - offset * 2   local h_blocks = math.floor(x:size(2) / output_size) +      ((x:size(2) % output_size == 0 and 0) or 1)   local w_blocks = math.floor(x:size(3) / output_size) +      ((x:size(3) % output_size == 0 and 0) or 1)      local h = offset + h_blocks * output_size + offset   local w = offset + w_blocks * output_size + offset   local pad_h1 = offset   local pad_w1 = offset   local pad_h2 = (h - offset) - x:size(2)   local pad_w2 = (w - offset) - x:size(3)   local yuv_nn = image.rgb2yuv(iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2))   local yuv_lanczos = image.rgb2yuv(iproc.padding(x_lanczos, pad_w1, pad_w2, pad_h1, pad_h2))   local y = reconstruct_y(model, yuv_nn[1], offset, block_size)   y[torch.lt(y, 0)] = 0   y[torch.gt(y, 1)] = 1   yuv_lanczos[1]:copy(y)   local output = image.yuv2rgb(iproc.crop(yuv_lanczos,					   pad_w1, pad_h1,					   yuv_lanczos:size(3) - pad_w2, yuv_lanczos:size(2) - pad_h2))   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   collectgarbage()      return outputendfunction reconstruct.image_rgb(model, x, offset, block_size)   block_size = block_size or 128   local output_size = block_size - offset * 2   local h_blocks = math.floor(x:size(2) / output_size) +      ((x:size(2) % output_size == 0 and 0) or 1)   local w_blocks = math.floor(x:size(3) / output_size) +      ((x:size(3) % output_size == 0 and 0) or 1)      local h = offset + h_blocks * output_size + offset   local w = offset + w_blocks * output_size + offset   local pad_h1 = offset   local pad_w1 = offset   local pad_h2 = (h - offset) - x:size(2)   local pad_w2 = (w - offset) - x:size(3)   local input = iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2)   local y = reconstruct_rgb(model, input, offset, block_size)   local output = iproc.crop(y,			     pad_w1, pad_h1,			     y:size(3) - pad_w2, y:size(2) - pad_h2)   collectgarbage()   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1      return outputendfunction reconstruct.scale_rgb(model, scale, x, offset, block_size)   block_size = block_size or 128   x = iproc.scale(x, x:size(3) * scale, x:size(2) * scale, "Box")   local output_size = block_size - offset * 2   local h_blocks = math.floor(x:size(2) / output_size) +      ((x:size(2) % output_size == 0 and 0) or 1)   local w_blocks = math.floor(x:size(3) / output_size) +      ((x:size(3) % output_size == 0 and 0) or 1)      local h = offset + h_blocks * output_size + offset   local w = offset + w_blocks * output_size + offset   local pad_h1 = offset   local pad_w1 = offset   local pad_h2 = (h - offset) - x:size(2)   local pad_w2 = (w - offset) - x:size(3)   local input = iproc.padding(x, pad_w1, pad_w2, pad_h1, pad_h2)   local y = reconstruct_rgb(model, input, offset, block_size)   local output = iproc.crop(y,			     pad_w1, pad_h1,			     y:size(3) - pad_w2, y:size(2) - pad_h2)   output[torch.lt(output, 0)] = 0   output[torch.gt(output, 1)] = 1   collectgarbage()      return outputendfunction reconstruct.image(model, x, block_size)   if reconstruct.is_rgb(model) then      return reconstruct.image_rgb(model, x,				   reconstruct.offset_size(model), block_size)   else      return reconstruct.image_y(model, x,				 reconstruct.offset_size(model), block_size)   endendfunction reconstruct.scale(model, scale, x, block_size)   if reconstruct.is_rgb(model) then      return reconstruct.scale_rgb(model, scale, x,				   reconstruct.offset_size(model), block_size)   else      return reconstruct.scale_y(model, scale, x,				 reconstruct.offset_size(model), block_size)   endendlocal function tta(f, model, x, block_size)   local average = nil   local offset = reconstruct.offset_size(model)   for i = 1, 4 do       local flip_f, iflip_f      if i == 1 then	 flip_f = function (a) return a end	 iflip_f = function (a) return a end      elseif i == 2 then	 flip_f = image.vflip	 iflip_f = image.vflip      elseif i == 3 then	 flip_f = image.hflip	 iflip_f = image.hflip      elseif i == 4 then	 flip_f = function (a) return image.hflip(image.vflip(a)) end	 iflip_f = function (a) return image.vflip(image.hflip(a)) end      end      for j = 1, 2 do	 local tr_f, itr_f	 if j == 1 then	    tr_f = function (a) return a end	    itr_f = function (a) return a end	 elseif j == 2 then	    tr_f = function(a) return a:transpose(2, 3):contiguous() end	    itr_f = function(a) return a:transpose(2, 3):contiguous() end	 end	 local out = itr_f(iflip_f(f(model, flip_f(tr_f(x)),				     offset, block_size)))	 if not average then	    average = out	 else	    average:add(out)	 end      end   end   return average:div(8.0)endfunction reconstruct.image_tta(model, x, block_size)   if reconstruct.is_rgb(model) then      return tta(reconstruct.image_rgb, model, x, block_size)   else      return tta(reconstruct.image_y, model, x, block_size)   endendfunction reconstruct.scale_tta(model, scale, x, block_size)   if reconstruct.is_rgb(model) then      local f = function (model, x, offset, block_size)	 return reconstruct.scale_rgb(model, scale, x, offset, block_size)      end      return tta(f, model, x, block_size)		    else      local f = function (model, x, offset, block_size)	 return reconstruct.scale_y(model, scale, x, offset, block_size)      end      return tta(f, model, x, block_size)   endendreturn reconstruct
 |