| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 | 
							- require 'pl'
 
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
 
- package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
 
- require 'os'
 
- require 'w2nn'
 
- local srcnn = require 'srcnn'
 
- local function cudnn2cunn(cudnn_model)
 
-    local name = srcnn.name(cudnn_model)
 
-    local cunn_model = srcnn[name]('cunn', srcnn.channels(cudnn_model))
 
-    local param_layers = {
 
-       {cunn="nn.SpatialConvolutionMM", cudnn="cudnn.SpatialConvolution", attr={"bias", "weight"}},
 
-       {cunn="nn.SpatialDilatedConvolution", cudnn="cudnn.SpatialDilatedConvolution", attr={"bias", "weight"}},
 
-       {cunn="nn.SpatialFullConvolution", cudnn="cudnn.SpatialFullConvolution", attr={"bias", "weight"}},
 
-       {cunn="nn.Linear", cudnn="nn.Linear", attr={"bias", "weight"}}
 
-    }
 
-    for i = 1, #param_layers do
 
-       local p = param_layers[i]
 
-       local weight_from = cudnn_model:findModules(p.cudnn)
 
-       local weight_to = cunn_model:findModules(p.cunn)
 
-       print(p.cudnn, #weight_from)
 
-       assert(#weight_from == #weight_to)
 
-    
 
-       for i = 1, #weight_from do
 
- 	 local from = weight_from[i]
 
- 	 local to = weight_to[i]
 
- 	 to.weight:copy(from.weight)
 
- 	 if to.bias then
 
- 	    to.bias:copy(from.bias)
 
- 	 end
 
-       end
 
-    end
 
-    cunn_model:cuda()
 
-    cunn_model:evaluate()
 
-    return cunn_model
 
- end
 
- local cmd = torch.CmdLine()
 
- cmd:text()
 
- cmd:text("waifu2x cudnn model to cunn model converter")
 
- cmd:text("Options:")
 
- cmd:option("-i", "", 'Specify the input cunn model')
 
- cmd:option("-o", "", 'Specify the output cudnn model')
 
- cmd:option("-iformat", "ascii", 'Specify the input format (ascii|binary)')
 
- cmd:option("-oformat", "ascii", 'Specify the output format (ascii|binary)')
 
- local opt = cmd:parse(arg)
 
- if not path.isfile(opt.i) then
 
-    cmd:help()
 
-    os.exit(-1)
 
- end
 
- local cudnn_model = torch.load(opt.i, opt.iformat)
 
- local cunn_model = cudnn2cunn(cudnn_model)
 
- torch.save(opt.o, cunn_model, opt.oformat)
 
 
  |