| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420 | require 'pl'local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.pathrequire 'xlua'require 'w2nn'local iproc = require 'iproc'local reconstruct = require 'reconstruct'local image_loader = require 'image_loader'local gm = require 'graphicsmagick'local cjson = require 'cjson'local cmd = torch.CmdLine()cmd:text()cmd:text("waifu2x-benchmark")cmd:text("Options:")cmd:option("-dir", "./data/test", 'test image directory')cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory')cmd:option("-model2_dir", "", 'model2 directory (optional)')cmd:option("-method", "scale", '(scale|noise|noise_scale)')cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))")cmd:option("-resize_blur", 1.0, 'blur parameter for resize')cmd:option("-color", "y", '(rgb|y)')cmd:option("-noise_level", 1, 'model noise level')cmd:option("-jpeg_quality", 75, 'jpeg quality')cmd:option("-jpeg_times", 1, 'jpeg compression times')cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)')cmd:option("-save_image", 0, 'save converted images')cmd:option("-save_baseline_image", 0, 'save baseline images')cmd:option("-output_dir", "./", 'output directroy')cmd:option("-show_progress", 1, 'show progressbar')cmd:option("-baseline_filter", "Catrom", 'baseline interpolation (Box|Lanczos|Catrom(Bicubic))')cmd:option("-save_info", 0, 'save score and parameters to benchmark.txt')cmd:option("-save_all", 0, 'group -save_info, -save_image and -save_baseline_image option')cmd:option("-thread", -1, 'number of CPU threads')cmd:option("-tta", 0, 'use tta')cmd:option("-tta_level", 8, 'tta level')cmd:option("-crop_size", 128, 'patch size per process')cmd:option("-batch_size", 1, 'batch_size')cmd:option("-force_cudnn", 0, 'use cuDNN backend')cmd:option("-yuv420", 0, 'use yuv420 jpeg')local function to_bool(settings, name)   if settings[name] == 1 then      settings[name] = true   else      settings[name] = false   endendlocal opt = cmd:parse(arg)torch.setdefaulttensortype('torch.FloatTensor')if cudnn then   cudnn.fastest = true   cudnn.benchmark = trueendto_bool(opt, "force_cudnn")to_bool(opt, "yuv420")to_bool(opt, "save_all")to_bool(opt, "tta")if opt.save_all then   opt.save_image = true   opt.save_info = true   opt.save_baseline_image = trueelse   to_bool(opt, "save_image")   to_bool(opt, "save_info")   to_bool(opt, "save_baseline_image")endto_bool(opt, "show_progress")if opt.thread > 0 then   torch.setnumthreads(tonumber(opt.thread))endlocal function rgb2y_matlab(x)   local y = torch.Tensor(1, x:size(2), x:size(3)):zero()   x = iproc.byte2float(x)   y:add(x[1] * 65.481)   y:add(x[2] * 128.553)   y:add(x[3] * 24.966)   y:add(16.0)   return y:byte():float()endlocal function RGBMSE(x1, x2)   x1 = iproc.float2byte(x1):float()   x2 = iproc.float2byte(x2):float()   return (x1 - x2):pow(2):mean()endlocal function YMSE(x1, x2)   if opt.range_bug == 1 then      local x1_2 = rgb2y_matlab(x1)      local x2_2 = rgb2y_matlab(x2)      return (x1_2 - x2_2):pow(2):mean()   else      local x1_2 = image.rgb2y(x1):mul(255.0)      local x2_2 = image.rgb2y(x2):mul(255.0)      return (x1_2 - x2_2):pow(2):mean()   endendlocal function MSE(x1, x2, color)   if color == "y" then      return YMSE(x1, x2)   else      return RGBMSE(x1, x2)   endendlocal function PSNR(x1, x2, color)   local mse = math.max(MSE(x1, x2, color), 1)   return 10 * math.log10((255.0 * 255.0) / mse)endlocal function MSE2PSNR(mse)   return 10 * math.log10((255.0 * 255.0) / math.max(mse, 1))endlocal function transform_jpeg(x, opt)   for i = 1, opt.jpeg_times do      jpeg = gm.Image(x, "RGB", "DHW")      jpeg:format("jpeg")      if opt.yuv420 then	 jpeg:samplingFactors({2.0, 1.0, 1.0})      else	 jpeg:samplingFactors({1.0, 1.0, 1.0})      end      blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)      jpeg:fromBlob(blob, len)      x = jpeg:toTensor("byte", "RGB", "DHW")   end   return iproc.byte2float(x)endlocal function baseline_scale(x, filter)   return iproc.scale(x,		      x:size(3) * 2.0,		      x:size(2) * 2.0,		      filter)endlocal function transform_scale(x, opt)   return iproc.scale(x,		      x:size(3) * 0.5,		      x:size(2) * 0.5,		      opt.filter, opt.resize_blur)endlocal function transform_scale_jpeg(x, opt)   x = iproc.scale(x,		   x:size(3) * 0.5,		   x:size(2) * 0.5,		   opt.filter, opt.resize_blur)   for i = 1, opt.jpeg_times do      jpeg = gm.Image(x, "RGB", "DHW")      jpeg:format("jpeg")      if opt.yuv420 then	 jpeg:samplingFactors({2.0, 1.0, 1.0})      else	 jpeg:samplingFactors({1.0, 1.0, 1.0})      end      blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)      jpeg:fromBlob(blob, len)      x = jpeg:toTensor("byte", "RGB", "DHW")   end   return iproc.byte2float(x)endlocal function benchmark(opt, x, input_func, model1, model2)   local mse   local model1_mse = 0   local model2_mse = 0   local baseline_mse = 0   local model1_psnr = 0   local model2_psnr = 0   local baseline_psnr = 0   local model1_time = 0   local model2_time = 0   local scale_f = reconstruct.scale   local image_f = reconstruct.image   if opt.tta then      scale_f = function(model, scale, x, block_size, batch_size)	 return reconstruct.scale_tta(model, opt.tta_level,				      scale, x, block_size, batch_size)      end      image_f = function(model, x, block_size, batch_size)	 return reconstruct.image_tta(model, opt.tta_level,				      x, block_size, batch_size)      end   end      for i = 1, #x do      local ground_truth = x[i].image      local basename = x[i].basename      local input, model1_output, model2_output, baseline_output      input = input_func(ground_truth, opt)      if opt.method == "scale" then	 t = sys.clock()	 model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size)	 model1_time = model1_time + (sys.clock() - t)	 if model2 then	    t = sys.clock()	    model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size)	    model2_time = model2_time + (sys.clock() - t)	 end	 baseline_output = baseline_scale(input, opt.baseline_filter)      elseif opt.method == "noise" then	 t = sys.clock()	 model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)	 model1_time = model1_time + (sys.clock() - t)	 if model2 then	    t = sys.clock()	    model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)	    model2_time = model2_time + (sys.clock() - t)	 end	 baseline_output = input      elseif opt.method == "noise_scale" then	 t = sys.clock()	 if model1.noise_scale_model then	    model1_output = scale_f(model1.noise_scale_model, 2.0,				    input, opt.crop_size, opt.batch_size)	 else	    if model1.noise_model then	       model1_output = image_f(model1.noise_model, input, opt.crop_size, opt.batch_size)	    else	       model1_output = input	    end	    model1_output = scale_f(model1.scale_model, 2.0, model1_output,				    opt.crop_size, opt.batch_size)	 end	 model1_time = model1_time + (sys.clock() - t)	 if model2 then	    t = sys.clock()	    if model2.noise_scale_model then	       model2_output = scale_f(model2.noise_scale_model, 2.0,				       input, opt.crop_size, opt.batch_size)	    else	       if model2.noise_model then		  model2_output = image_f(model2.noise_model, input,					  opt.crop_size, opt.batch_size)	       else		  model2_output = input	       end	       model2_output = scale_f(model2.scale_model, 2.0, model2_output,				       opt.crop_size, opt.batch_size)	    end	    model2_time = model2_time + (sys.clock() - t)	 end	 baseline_output = baseline_scale(input, opt.baseline_filter)      end      mse = MSE(ground_truth, model1_output, opt.color)      model1_mse = model1_mse + mse      model1_psnr = model1_psnr + MSE2PSNR(mse)      if model2 then	 mse = MSE(ground_truth, model2_output, opt.color)	 model2_mse = model2_mse + mse	 model2_psnr = model2_psnr + MSE2PSNR(mse)      end      if baseline_output then	 mse = MSE(ground_truth, baseline_output, opt.color)	 baseline_mse = baseline_mse + mse	 baseline_psnr = baseline_psnr + MSE2PSNR(mse)      end      if opt.save_image then	 if opt.save_baseline_image and baseline_output then	    image.save(path.join(opt.output_dir, string.format("%s_baseline.png", basename)),		       baseline_output)	 end	 if model1_output then	    image.save(path.join(opt.output_dir, string.format("%s_model1.png", basename)),		       model1_output)	 end	 if model2_output then	    image.save(path.join(opt.output_dir, string.format("%s_model2.png", basename)),		       model2_output)	 end      end      if opt.show_progress or i == #x then	 if model2 then	    if baseline_output then	       io.stdout:write(		  string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r",				i, #x,				model1_time,				model2_time,				math.sqrt(baseline_mse / i),				math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),				baseline_psnr / i,				model1_psnr / i, model2_psnr / i		  ))	    else	       io.stdout:write(		  string.format("%d/%d; model1_time=%.2f, model2_time=%.2f, model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r",				i, #x,				model1_time,				model2_time,				math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),				model1_psnr / i, model2_psnr / i		  ))	    end	 else	    if baseline_output then	       io.stdout:write(		  string.format("%d/%d; model1_time=%.2f, baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r",				i, #x,				model1_time,				math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i),				baseline_psnr / i, model1_psnr / i		  ))	    else	       io.stdout:write(		  string.format("%d/%d; model1_time=%.2f, model1_rmse=%f, model1_psnr=%f \r",				i, #x,				model1_time,				math.sqrt(model1_mse / i), model1_psnr / i		  ))	    end	 end	 io.stdout:flush()      end   end   if opt.save_info then      local fp = io.open(path.join(opt.output_dir, "benchmark.txt"), "w")      fp:write("options : " .. cjson.encode(opt) .. "\n")      if baseline_psnr > 0 then	 fp:write(string.format("baseline: RMSE = %.3f, PSNR = %.3f\n",				math.sqrt(baseline_mse / #x), baseline_psnr / #x))      end      if model1_psnr > 0 then	 fp:write(string.format("model1  : RMSE = %.3f, PSNR = %.3f, evaluation time = %.3f\n",				math.sqrt(model1_mse / #x), model1_psnr / #x, model1_time))      end      if model2_psnr > 0 then	 fp:write(string.format("model2  : RMSE = %.3f, PSNR = %.3f, evaluation time = %.3f\n",				math.sqrt(model2_mse / #x), model2_psnr / #x, model2_time))      end      fp:close()   end   io.stdout:write("\n")endlocal function load_data(test_dir)   local test_x = {}   local files = dir.getfiles(test_dir, "*.*")   for i = 1, #files do      local name = path.basename(files[i])      local e = path.extension(name)      local base = name:sub(0, name:len() - e:len())      local img = image_loader.load_float(files[i])      if img then	 table.insert(test_x, {image = iproc.crop_mod4(img),			       basename = base})      end      if opt.show_progress then	 xlua.progress(i, #files)      end   end   return test_xendfunction load_noise_scale_model(model_dir, noise_level, force_cudnn)   local f = path.join(model_dir, string.format("noise%d_scale2.0x_model.t7", opt.noise_level))   local s1, noise_scale = pcall(w2nn.load_model, f, force_cudnn)   local model = {}   if not s1 then      f = path.join(model_dir, string.format("noise%d_model.t7", opt.noise_level))      local noise      s1, noise = pcall(w2nn.load_model, f, force_cudnn)      if not s1 then	 model.noise_model = nil	 print(model_dir .. "'s noise model is not found. benchmark will use only scale model.")      else	 model.noise_model = noise      end      f = path.join(model_dir, "scale2.0x_model.t7")      local scale      s1, scale = pcall(w2nn.load_model, f, force_cudnn)      if not s1 then	 return nil      end      model.scale_model = scale   else      model.noise_scale_model = noise_scale   end   return modelendif opt.show_progress then   print(opt)endif opt.method == "scale" then   local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7")   local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7")   local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn)   local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn)   if not s1 then      error("Load error: " .. f1)   end   if not s2 then      model2 = nil   end   local test_x = load_data(opt.dir)   benchmark(opt, test_x, transform_scale, model1, model2)elseif opt.method == "noise" then   local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level))   local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level))   local s1, model1 = pcall(w2nn.load_model, f1, opt.force_cudnn)   local s2, model2 = pcall(w2nn.load_model, f2, opt.force_cudnn)   if not s1 then      error("Load error: " .. f1)   end   if not s2 then      model2 = nil   end   local test_x = load_data(opt.dir)   benchmark(opt, test_x, transform_jpeg, model1, model2)elseif opt.method == "noise_scale" then   local model2 = nil   local model1 = load_noise_scale_model(opt.model1_dir, opt.noise_level, opt.force_cudnn)   if opt.model2_dir:len() > 0 then      model2 = load_noise_scale_model(opt.model2_dir, opt.noise_level, opt.force_cudnn)   end   local test_x = load_data(opt.dir)   benchmark(opt, test_x, transform_scale_jpeg, model1, model2)end
 |