| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 | 
							- require 'pl'
 
- require 'cunn'
 
- local iproc = require 'iproc'
 
- local gm = {}
 
- gm.Image = require 'graphicsmagick.Image'
 
- local data_augmentation = {}
 
- local function pcacov(x)
 
-    local mean = torch.mean(x, 1)
 
-    local xm = x - torch.ger(torch.ones(x:size(1)), mean:squeeze())
 
-    local c = torch.mm(xm:t(), xm)
 
-    c:div(x:size(1) - 1)
 
-    local ce, cv = torch.symeig(c, 'V')
 
-    return ce, cv
 
- end
 
- function random_rect_size(rect_min, rect_max)
 
-    local r = torch.Tensor(2):uniform():cmul(torch.Tensor({rect_max - rect_min, rect_max - rect_min})):int()
 
-    local rect_h = r[1] + rect_min
 
-    local rect_w = r[2] + rect_min
 
-    return rect_h, rect_w
 
- end
 
- function random_rect(height, width, rect_h, rect_w)
 
-    local r = torch.Tensor(2):uniform():cmul(torch.Tensor({height - 1 - rect_h, width-1 - rect_w})):int()
 
-    local rect_y1 = r[1] + 1
 
-    local rect_x1 = r[2] + 1
 
-    local rect_x2 = rect_x1 + rect_w
 
-    local rect_y2 = rect_y1 + rect_h
 
-    return {x1 = rect_x1, y1 = rect_y1, x2 = rect_x2, y2 = rect_y2}
 
- end
 
- function data_augmentation.erase(src, p, n, rect_min, rect_max)
 
-    if torch.uniform() < p then
 
-       local src, conversion = iproc.byte2float(src)
 
-       src = src:contiguous():clone()
 
-       local ch = src:size(1)
 
-       local height = src:size(2)
 
-       local width = src:size(3)
 
-       for i = 1, n do
 
- 	 local rect_h, rect_w = random_rect_size(rect_min, rect_max)
 
- 	 local rect1 = random_rect(height, width, rect_h, rect_w)
 
- 	 local rect2 = random_rect(height, width, rect_h, rect_w)
 
- 	 dest_rect = src:sub(1, ch, rect1.y1, rect1.y2, rect1.x1, rect1.x2)
 
- 	 src_rect = src:sub(1, ch, rect2.y1, rect2.y2, rect2.x1, rect2.x2)
 
- 	 dest_rect:copy(src_rect:clone())
 
-       end
 
-       if conversion then
 
- 	 src = iproc.float2byte(src)
 
-       end
 
-       return src
 
-    else
 
-       return src
 
-    end
 
- end
 
- function data_augmentation.color_noise(src, p, factor)
 
-    factor = factor or 0.1
 
-    if torch.uniform() < p then
 
-       local src, conversion = iproc.byte2float(src)
 
-       local src_t = src:reshape(src:size(1), src:nElement() / src:size(1)):t():contiguous()
 
-       local ce, cv = pcacov(src_t)
 
-       local color_scale = torch.Tensor(3):uniform(1 / (1 + factor), 1 + factor)
 
-       
 
-       pca_space = torch.mm(src_t, cv):t():contiguous()
 
-       for i = 1, 3 do
 
- 	 pca_space[i]:mul(color_scale[i])
 
-       end
 
-       local dest = torch.mm(pca_space:t(), cv:t()):t():contiguous():resizeAs(src)
 
-       dest:clamp(0.0, 1.0)
 
-       if conversion then
 
- 	 dest = iproc.float2byte(dest)
 
-       end
 
-       return dest
 
-    else
 
-       return src
 
-    end
 
- end
 
- function data_augmentation.overlay(src, p)
 
-    if torch.uniform() < p then
 
-       local r = torch.uniform()
 
-       local src, conversion = iproc.byte2float(src)
 
-       src = src:contiguous()
 
-       local flip = data_augmentation.flip(src)
 
-       flip:mul(r):add(src * (1.0 - r))
 
-       if conversion then
 
- 	 flip = iproc.float2byte(flip)
 
-       end
 
-       return flip
 
-    else
 
-       return src
 
-    end
 
- end
 
- function data_augmentation.unsharp_mask(src, p)
 
-    if torch.uniform() < p then
 
-       local radius = 0 -- auto
 
-       local sigma = torch.uniform(0.5, 1.5)
 
-       local amount = torch.uniform(0.1, 0.9)
 
-       local threshold = torch.uniform(0.0, 0.05)
 
-       local unsharp = gm.Image(src, "RGB", "DHW"):
 
- 	 unsharpMask(radius, sigma, amount, threshold):
 
- 	 toTensor("float", "RGB", "DHW")
 
-       
 
-       if src:type() == "torch.ByteTensor" then
 
- 	 return iproc.float2byte(unsharp)
 
-       else
 
- 	 return unsharp
 
-       end
 
-    else
 
-       return src
 
-    end
 
- end
 
- function data_augmentation.blur(src, p, size, sigma_min, sigma_max)
 
-    size = size or "3"
 
-    filters = utils.split(size, ",")
 
-    for i = 1, #filters do
 
-       local s = tonumber(filters[i])
 
-       filters[i] = s
 
-    end
 
-    if torch.uniform() < p then
 
-       local src, conversion = iproc.byte2float(src)
 
-       local kernel_size = filters[torch.random(1, #filters)]
 
-       local sigma
 
-       if sigma_min == sigma_max then
 
- 	 sigma = sigma_min
 
-       else
 
- 	 sigma = torch.uniform(sigma_min, sigma_max)
 
-       end
 
-       local kernel = iproc.gaussian2d(kernel_size, sigma)
 
-       local dest = image.convolve(src, kernel, 'same')
 
-       if conversion then
 
- 	 dest = iproc.float2byte(dest)
 
-       end
 
-       return dest
 
-    else
 
-       return src
 
-    end
 
- end
 
- function data_augmentation.pairwise_scale(x, y, p, scale_min, scale_max)
 
-    if torch.uniform() < p then
 
-       assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-       local scale = torch.uniform(scale_min, scale_max)
 
-       local h = math.floor(x:size(2) * scale)
 
-       local w = math.floor(x:size(3) * scale)
 
-       local filters = {"Lanczos", "Catrom"}
 
-       local x_filter = filters[torch.random(1, 2)]
 
-       x = iproc.scale(x, w, h, x_filter)
 
-       y = iproc.scale(y, w, h, "Triangle")
 
-       return x, y
 
-    else
 
-       return x, y
 
-    end
 
- end
 
- function data_augmentation.pairwise_rotate(x, y, p, r_min, r_max)
 
-    if torch.uniform() < p then
 
-       assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-       local r = torch.uniform(r_min, r_max) / 360.0 * math.pi
 
-       x = iproc.rotate(x, r)
 
-       y = iproc.rotate(y, r)
 
-       return x, y
 
-    else
 
-       return x, y
 
-    end
 
- end
 
- function data_augmentation.pairwise_negate(x, y, p)
 
-    if torch.uniform() < p then
 
-       assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-       x = iproc.negate(x)
 
-       y = iproc.negate(y)
 
-       return x, y
 
-    else
 
-       return x, y
 
-    end
 
- end
 
- function data_augmentation.pairwise_negate_x(x, y, p)
 
-    if torch.uniform() < p then
 
-       assert(x:size(2) == y:size(2) and x:size(3) == y:size(3))
 
-       x = iproc.negate(x)
 
-       return x, y
 
-    else
 
-       return x, y
 
-    end
 
- end
 
- function data_augmentation.pairwise_flip(x, y)
 
-    local flip = torch.random(1, 4)
 
-    local tr = torch.random(1, 2)
 
-    local x, conversion = iproc.byte2float(x)
 
-    y = iproc.byte2float(y)
 
-    x = x:contiguous()
 
-    y = y:contiguous()
 
-    if tr == 1 then
 
-       -- pass
 
-    elseif tr == 2 then
 
-       x = x:transpose(2, 3):contiguous()
 
-       y = y:transpose(2, 3):contiguous()
 
-    end
 
-    if flip == 1 then
 
-       x = iproc.hflip(x)
 
-       y = iproc.hflip(y)
 
-    elseif flip == 2 then
 
-       x = iproc.vflip(x)
 
-       y = iproc.vflip(y)
 
-    elseif flip == 3 then
 
-       x = iproc.hflip(iproc.vflip(x))
 
-       y = iproc.hflip(iproc.vflip(y))
 
-    elseif flip == 4 then
 
-    end
 
-    if conversion then
 
-       x = iproc.float2byte(x)
 
-       y = iproc.float2byte(y)
 
-    end
 
-    return x, y
 
- end
 
- function data_augmentation.shift_1px(src)
 
-    -- reducing the even/odd issue in nearest neighbor scaler.
 
-    local direction = torch.random(1, 4)
 
-    local x_shift = 0
 
-    local y_shift = 0
 
-    if direction == 1 then
 
-       x_shift = 1
 
-       y_shift = 0
 
-    elseif direction == 2 then
 
-       x_shift = 0
 
-       y_shift = 1
 
-    elseif direction == 3 then
 
-       x_shift = 1
 
-       y_shift = 1
 
-    elseif flip == 4 then
 
-       x_shift = 0
 
-       y_shift = 0
 
-    end
 
-    local w = src:size(3) - x_shift
 
-    local h = src:size(2) - y_shift
 
-    w = w - (w % 4)
 
-    h = h - (h % 4)
 
-    local dest = iproc.crop(src, x_shift, y_shift, x_shift + w, y_shift + h)
 
-    return dest
 
- end
 
- function data_augmentation.flip(src)
 
-    local flip = torch.random(1, 4)
 
-    local tr = torch.random(1, 2)
 
-    local src, conversion = iproc.byte2float(src)
 
-    local dest
 
-    src = src:contiguous()
 
-    if tr == 1 then
 
-       -- pass
 
-    elseif tr == 2 then
 
-       src = src:transpose(2, 3):contiguous()
 
-    end
 
-    if flip == 1 then
 
-       dest = iproc.hflip(src)
 
-    elseif flip == 2 then
 
-       dest = iproc.vflip(src)
 
-    elseif flip == 3 then
 
-       dest = iproc.hflip(iproc.vflip(src))
 
-    elseif flip == 4 then
 
-       dest = src
 
-    end
 
-    if conversion then
 
-       dest = iproc.float2byte(dest)
 
-    end
 
-    return dest
 
- end
 
- local function test_blur()
 
-    torch.setdefaulttensortype("torch.FloatTensor")
 
-    local image =require 'image'
 
-    local src = image.lena()
 
-    image.display({image = src, min=0, max=1})
 
-    local dest = data_augmentation.blur(src, 1.0, "3,5", 0.5, 0.6)
 
-    image.display({image = dest, min=0, max=1})
 
-    dest = data_augmentation.blur(src, 1.0, "3", 1.0, 1.0)
 
-    image.display({image = dest, min=0, max=1})
 
-    dest = data_augmentation.blur(src, 1.0, "5", 0.75, 0.75)
 
-    image.display({image = dest, min=0, max=1})
 
- end
 
- --test_blur()
 
- return data_augmentation
 
 
  |