minibatch_adam.lua 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. require 'optim'
  2. require 'cutorch'
  3. require 'xlua'
  4. local function minibatch_adam(model, criterion, eval_metric,
  5. train_x, train_y,
  6. config)
  7. local parameters, gradParameters = model:getParameters()
  8. config = config or {}
  9. if config.xEvalCount == nil then
  10. config.xEvalCount = 0
  11. config.learningRate = config.xLearningRate
  12. end
  13. local sum_loss = 0
  14. local sum_eval = 0
  15. local count_loss = 0
  16. local batch_size = config.xBatchSize or 32
  17. local shuffle = torch.randperm(train_x:size(1))
  18. local c = 1
  19. local inputs_tmp = torch.Tensor(batch_size,
  20. train_x:size(2), train_x:size(3), train_x:size(4)):zero()
  21. local targets_tmp = torch.Tensor(batch_size,
  22. train_y:size(2)):zero()
  23. local inputs = inputs_tmp:clone():cuda()
  24. local targets = targets_tmp:clone():cuda()
  25. local instance_loss = torch.Tensor(train_x:size(1)):zero()
  26. print("## update")
  27. for t = 1, train_x:size(1), batch_size do
  28. if t + batch_size -1 > train_x:size(1) then
  29. break
  30. end
  31. for i = 1, batch_size do
  32. inputs_tmp[i]:copy(train_x[shuffle[t + i - 1]])
  33. targets_tmp[i]:copy(train_y[shuffle[t + i - 1]])
  34. end
  35. inputs:copy(inputs_tmp)
  36. targets:copy(targets_tmp)
  37. local feval = function(x)
  38. if x ~= parameters then
  39. parameters:copy(x)
  40. end
  41. gradParameters:zero()
  42. local output = model:forward(inputs)
  43. local f = criterion:forward(output, targets)
  44. local se = 0
  45. for i = 1, batch_size do
  46. local el = eval_metric:forward(output[i], targets[i])
  47. se = se + el
  48. instance_loss[shuffle[t + i - 1]] = el
  49. end
  50. sum_eval = sum_eval + (se / batch_size)
  51. sum_loss = sum_loss + f
  52. count_loss = count_loss + 1
  53. model:backward(inputs, criterion:backward(output, targets))
  54. return f, gradParameters
  55. end
  56. optim.adam(feval, parameters, config)
  57. config.xEvalCount = config.xEvalCount + batch_size
  58. config.learningRate = config.xLearningRate / (1 + config.xEvalCount * config.xLearningRateDecay)
  59. c = c + 1
  60. if c % 50 == 0 then
  61. collectgarbage()
  62. xlua.progress(t, train_x:size(1))
  63. end
  64. end
  65. xlua.progress(train_x:size(1), train_x:size(1))
  66. return { loss = sum_loss / count_loss, MSE = sum_eval / count_loss, PSNR = 10 * math.log10(1 / (sum_eval / count_loss))}, instance_loss
  67. end
  68. return minibatch_adam