| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 | require 'image'local gm = require 'graphicsmagick'local iproc = require 'iproc'local data_augmentation = require 'data_augmentation'local pairwise_transform = {}local function random_half(src, p)   if torch.uniform() < p then      local filter = ({"Box","Box","Blackman","Sinc","Lanczos"})[torch.random(1, 5)]      return iproc.scale(src, src:size(3) * 0.5, src:size(2) * 0.5, filter)   else      return src   endendlocal function crop_if_large(src, max_size)   local tries = 4   if src:size(2) > max_size and src:size(3) > max_size then      local rect      for i = 1, tries do	 local yi = torch.random(0, src:size(2) - max_size)	 local xi = torch.random(0, src:size(3) - max_size)	 rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)	 -- ignore simple background	 if rect:float():std() >= 0 then	    break	 end      end      return rect   else      return src   endendlocal function preprocess(src, crop_size, options)   local dest = src   dest = random_half(dest, options.random_half_rate)   dest = crop_if_large(dest, math.max(crop_size * 2, options.max_size))   dest = data_augmentation.flip(dest)   dest = data_augmentation.color_noise(dest, options.random_color_noise_rate)   dest = data_augmentation.overlay(dest, options.random_overlay_rate)   dest = data_augmentation.shift_1px(dest)      return destendlocal function active_cropping(x, y, size, p, tries)   assert("x:size == y:size", x:size(2) == y:size(2) and x:size(3) == y:size(3))   local r = torch.uniform()   if p < r then      local xi = torch.random(0, y:size(3) - (size + 1))      local yi = torch.random(0, y:size(2) - (size + 1))      local xc = iproc.crop(x, xi, yi, xi + size, yi + size)      local yc = iproc.crop(y, xi, yi, xi + size, yi + size)      return xc, yc   else      local best_se = 0.0      local best_xc, best_yc      local m = torch.FloatTensor(x:size(1), size, size)      for i = 1, tries do	 local xi = torch.random(0, y:size(3) - (size + 1))	 local yi = torch.random(0, y:size(2) - (size + 1))	 local xc = iproc.crop(x, xi, yi, xi + size, yi + size)	 local yc = iproc.crop(y, xi, yi, xi + size, yi + size)	 local xcf = iproc.byte2float(xc)	 local ycf = iproc.byte2float(yc)	 local se = m:copy(xcf):add(-1.0, ycf):pow(2):sum()	 if se >= best_se then	    best_xc = xcf	    best_yc = ycf	    best_se = se	 end      end      return best_xc, best_yc   endendfunction pairwise_transform.scale(src, scale, size, offset, n, options)   local filters = {      "Box","Box",  -- 0.012756949974688      "Blackman",   -- 0.013191924552285      --"Cartom",     -- 0.013753536746706      --"Hanning",    -- 0.013761314529647      --"Hermite",    -- 0.013850225205266      "Sinc",   -- 0.014095824314306      "Lanczos",       -- 0.014244299255442   }   local unstable_region_offset = 8   local downscale_filter = filters[torch.random(1, #filters)]   local y = preprocess(src, size, options)   assert(y:size(2) % 4 == 0 and y:size(3) % 4 == 0)   local down_scale = 1.0 / scale   local x = iproc.scale(iproc.scale(y, y:size(3) * down_scale,				     y:size(2) * down_scale, downscale_filter),			 y:size(3), y:size(2))   x = iproc.crop(x, unstable_region_offset, unstable_region_offset,		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)   y = iproc.crop(y, unstable_region_offset, unstable_region_offset,		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)   assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)   assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))      local batch = {}   for i = 1, n do      local xc, yc = active_cropping(x, y,				     size,				     options.active_cropping_rate,				     options.active_cropping_tries)      xc = iproc.byte2float(xc)      yc = iproc.byte2float(yc)      if options.rgb then      else	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))      end      table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})   end   return batchendfunction pairwise_transform.jpeg_(src, quality, size, offset, n, options)   local unstable_region_offset = 8   local y = preprocess(src, size, options)   local x = y   for i = 1, #quality do      x = gm.Image(x, "RGB", "DHW")      x:format("jpeg"):depth(8)      if options.jpeg_sampling_factors == 444 then	 x:samplingFactors({1.0, 1.0, 1.0})      else -- 420	 x:samplingFactors({2.0, 1.0, 1.0})      end      local blob, len = x:toBlob(quality[i])      x:fromBlob(blob, len)      x = x:toTensor("byte", "RGB", "DHW")   end   x = iproc.crop(x, unstable_region_offset, unstable_region_offset,		  x:size(3) - unstable_region_offset, x:size(2) - unstable_region_offset)   y = iproc.crop(y, unstable_region_offset, unstable_region_offset,		  y:size(3) - unstable_region_offset, y:size(2) - unstable_region_offset)   assert(x:size(2) % 4 == 0 and x:size(3) % 4 == 0)   assert(x:size(1) == y:size(1) and x:size(2) == y:size(2) and x:size(3) == y:size(3))      local batch = {}   for i = 1, n do      local xc, yc = active_cropping(x, y, size,				     options.active_cropping_rate,				     options.active_cropping_tries)      xc = iproc.byte2float(xc)      yc = iproc.byte2float(yc)      if options.rgb then      else	 yc = image.rgb2yuv(yc)[1]:reshape(1, yc:size(2), yc:size(3))	 xc = image.rgb2yuv(xc)[1]:reshape(1, xc:size(2), xc:size(3))      end      if torch.uniform() < options.nr_rate then	 -- reducing noise	 table.insert(batch, {xc, iproc.crop(yc, offset, offset, size - offset, size - offset)})      else	 -- ratain useful details	 table.insert(batch, {yc, iproc.crop(yc, offset, offset, size - offset, size - offset)})      end   end   return batchendfunction pairwise_transform.jpeg(src, style, level, size, offset, n, options)   if style == "art" then      if level == 1 then	 return pairwise_transform.jpeg_(src, {torch.random(65, 85)},					 size, offset, n, options)      elseif level == 2 then	 local r = torch.uniform()	 if r > 0.6 then	    return pairwise_transform.jpeg_(src, {torch.random(27, 70)},					    size, offset, n, options)	 elseif r > 0.3 then	    local quality1 = torch.random(37, 70)	    local quality2 = quality1 - torch.random(5, 10)	    return pairwise_transform.jpeg_(src, {quality1, quality2},					    size, offset, n, options)	 else	    local quality1 = torch.random(52, 70)	    local quality2 = quality1 - torch.random(5, 15)	    local quality3 = quality1 - torch.random(15, 25)	    	    return pairwise_transform.jpeg_(src, 					    {quality1, quality2, quality3},					    size, offset, n, options)	 end      else	 error("unknown noise level: " .. level)      end   elseif style == "photo" then      if level == 1 then	 return pairwise_transform.jpeg_(src, {torch.random(30, 75)},					 size, offset, n,					 options)      elseif level == 2 then	 if torch.uniform() > 0.6 then	    return pairwise_transform.jpeg_(src, {torch.random(30, 60)},					    size, offset, n, options)	 else	    local quality1 = torch.random(40, 60)	    local quality2 = quality1 - torch.random(5, 10)	    return pairwise_transform.jpeg_(src, {quality1, quality2},					    size, offset, n, options)	 end      else	 error("unknown noise level: " .. level)      end   else      error("unknown style: " .. style)   endendfunction pairwise_transform.test_jpeg(src)   torch.setdefaulttensortype("torch.FloatTensor")   local options = {random_color_noise_rate = 0.5,		    random_half_rate = 0.5,		    random_overlay_rate = 0.5,		    nr_rate = 1.0,		    active_cropping_rate = 0.5,		    active_cropping_tries = 10,		    max_size = 256,		    rgb = true   }   local image = require 'image'   local src = image.lena()   for i = 1, 9 do      local xy = pairwise_transform.jpeg(src,					 "art",					 torch.random(1, 2),					 128, 7, 1, options)      image.display({image = xy[1][1], legend = "y:" .. (i * 10), min=0, max=1})      image.display({image = xy[1][2], legend = "x:" .. (i * 10), min=0, max=1})   endendfunction pairwise_transform.test_scale(src)   torch.setdefaulttensortype("torch.FloatTensor")   local options = {random_color_noise_rate = 0.5,		    random_half_rate = 0.5,		    random_overlay_rate = 0.5,		    active_cropping_rate = 0.5,		    active_cropping_tries = 10,		    max_size = 256,		    rgb = true   }   local image = require 'image'   local src = image.lena()   for i = 1, 10 do      local xy = pairwise_transform.scale(src, 2.0, 128, 7, 1, options)      image.display({image = xy[1][1], legend = "y:" .. (i * 10), min = 0, max = 1})      image.display({image = xy[1][2], legend = "x:" .. (i * 10), min = 0, max = 1})   endendreturn pairwise_transform
 |