123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- require 'pl'
- local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
- package.path = path.join(path.dirname(__FILE__), "..", "lib", "?.lua;") .. package.path
- require 'xlua'
- require 'w2nn'
- local iproc = require 'iproc'
- local reconstruct = require 'reconstruct'
- local image_loader = require 'image_loader'
- local gm = require 'graphicsmagick'
- local cjson = require 'cjson'
- local cmd = torch.CmdLine()
- cmd:text()
- cmd:text("waifu2x-benchmark")
- cmd:text("Options:")
- cmd:option("-dir", "./data/test", 'test image directory')
- cmd:option("-model1_dir", "./models/anime_style_art_rgb", 'model1 directory')
- cmd:option("-model2_dir", "", 'model2 directory (optional)')
- cmd:option("-method", "scale", '(scale|noise)')
- cmd:option("-filter", "Catrom", "downscaling filter (Box|Lanczos|Catrom(Bicubic))")
- cmd:option("-resize_blur", 1.0, 'blur parameter for resize')
- cmd:option("-color", "y", '(rgb|y)')
- cmd:option("-noise_level", 1, 'model noise level')
- cmd:option("-jpeg_quality", 75, 'jpeg quality')
- cmd:option("-jpeg_times", 1, 'jpeg compression times')
- cmd:option("-jpeg_quality_down", 5, 'value of jpeg quality to decrease each times')
- cmd:option("-range_bug", 0, 'Reproducing the dynamic range bug that is caused by MATLAB\'s rgb2ycbcr(1|0)')
- cmd:option("-save_image", 0, 'save converted images')
- cmd:option("-save_baseline_image", 0, 'save baseline images')
- cmd:option("-output_dir", "./", 'output directroy')
- cmd:option("-show_progress", 1, 'show progressbar')
- cmd:option("-baseline_filter", "Catrom", 'baseline interpolation (Box|Lanczos|Catrom(Bicubic))')
- cmd:option("-save_info", 0, 'save score and parameters to benchmark.txt')
- cmd:option("-save_all", 0, 'group -save_info, -save_image and -save_baseline_image option')
- cmd:option("-thread", -1, 'number of CPU threads')
- cmd:option("-tta", 0, 'use tta')
- cmd:option("-tta_level", 8, 'tta level')
- cmd:option("-crop_size", 128, 'patch size per process')
- cmd:option("-batch_size", 1, 'batch_size')
- local function to_bool(settings, name)
- if settings[name] == 1 then
- settings[name] = true
- else
- settings[name] = false
- end
- end
- local opt = cmd:parse(arg)
- torch.setdefaulttensortype('torch.FloatTensor')
- if cudnn then
- cudnn.fastest = true
- cudnn.benchmark = false
- end
- to_bool(opt, "save_all")
- to_bool(opt, "tta")
- if opt.save_all then
- opt.save_image = true
- opt.save_info = true
- opt.save_baseline_image = true
- else
- to_bool(opt, "save_image")
- to_bool(opt, "save_info")
- to_bool(opt, "save_baseline_image")
- end
- to_bool(opt, "show_progress")
- if opt.thread > 0 then
- torch.setnumthreads(tonumber(opt.thread))
- end
- local function rgb2y_matlab(x)
- local y = torch.Tensor(1, x:size(2), x:size(3)):zero()
- x = iproc.byte2float(x)
- y:add(x[1] * 65.481)
- y:add(x[2] * 128.553)
- y:add(x[3] * 24.966)
- y:add(16.0)
- return y:byte():float()
- end
- local function RGBMSE(x1, x2)
- x1 = iproc.float2byte(x1):float()
- x2 = iproc.float2byte(x2):float()
- return (x1 - x2):pow(2):mean()
- end
- local function YMSE(x1, x2)
- if opt.range_bug == 1 then
- local x1_2 = rgb2y_matlab(x1)
- local x2_2 = rgb2y_matlab(x2)
- return (x1_2 - x2_2):pow(2):mean()
- else
- local x1_2 = image.rgb2y(x1):mul(255.0)
- local x2_2 = image.rgb2y(x2):mul(255.0)
- return (x1_2 - x2_2):pow(2):mean()
- end
- end
- local function MSE(x1, x2, color)
- if color == "y" then
- return YMSE(x1, x2)
- else
- return RGBMSE(x1, x2)
- end
- end
- local function PSNR(x1, x2, color)
- local mse = math.max(MSE(x1, x2, color), 1)
- return 10 * math.log10((255.0 * 255.0) / mse)
- end
- local function transform_jpeg(x, opt)
- for i = 1, opt.jpeg_times do
- jpeg = gm.Image(x, "RGB", "DHW")
- jpeg:format("jpeg")
- jpeg:samplingFactors({1.0, 1.0, 1.0})
- blob, len = jpeg:toBlob(opt.jpeg_quality - (i - 1) * opt.jpeg_quality_down)
- jpeg:fromBlob(blob, len)
- x = jpeg:toTensor("byte", "RGB", "DHW")
- end
- return iproc.byte2float(x)
- end
- local function baseline_scale(x, filter)
- return iproc.scale(x,
- x:size(3) * 2.0,
- x:size(2) * 2.0,
- filter)
- end
- local function transform_scale(x, opt)
- return iproc.scale(x,
- x:size(3) * 0.5,
- x:size(2) * 0.5,
- opt.filter, opt.resize_blur)
- end
- local function benchmark(opt, x, input_func, model1, model2)
- local model1_mse = 0
- local model2_mse = 0
- local baseline_mse = 0
- local model1_psnr = 0
- local model2_psnr = 0
- local baseline_psnr = 0
- local scale_f = reconstruct.scale
- local image_f = reconstruct.image
- if opt.tta then
- scale_f = function(model, scale, x, block_size, batch_size)
- return reconstruct.scale_tta(model, opt.tta_level,
- scale, x, block_size, batch_size)
- end
- image_f = function(model, x, block_size, batch_size)
- return reconstruct.image_tta(model, opt.tta_level,
- x, block_size, batch_size)
- end
- end
-
- for i = 1, #x do
- local ground_truth = x[i].image
- local basename = x[i].basename
-
- local input, model1_output, model2_output, baseline_output
- input = input_func(ground_truth, opt)
- t = sys.clock()
- if input:size(3) == ground_truth:size(3) then
- model1_output = image_f(model1, input, opt.crop_size, opt.batch_size)
- if model2 then
- model2_output = image_f(model2, input, opt.crop_size, opt.batch_size)
- end
- else
- model1_output = scale_f(model1, 2.0, input, opt.crop_size, opt.batch_size)
- if model2 then
- model2_output = scale_f(model2, 2.0, input, opt.crop_size, opt.batch_size)
- end
- baseline_output = baseline_scale(input, opt.baseline_filter)
- end
- model1_mse = model1_mse + MSE(ground_truth, model1_output, opt.color)
- model1_psnr = model1_psnr + PSNR(ground_truth, model1_output, opt.color)
- if model2 then
- model2_mse = model2_mse + MSE(ground_truth, model2_output, opt.color)
- model2_psnr = model2_psnr + PSNR(ground_truth, model2_output, opt.color)
- end
- if baseline_output then
- baseline_mse = baseline_mse + MSE(ground_truth, baseline_output, opt.color)
- baseline_psnr = baseline_psnr + PSNR(ground_truth, baseline_output, opt.color)
- end
- if opt.save_image then
- if opt.save_baseline_image and baseline_output then
- image.save(path.join(opt.output_dir, string.format("%s_baseline.png", basename)),
- baseline_output)
- end
- if model1_output then
- image.save(path.join(opt.output_dir, string.format("%s_model1.png", basename)),
- model1_output)
- end
- if model2_output then
- image.save(path.join(opt.output_dir, string.format("%s_model2.png", basename)),
- model2_output)
- end
- end
- if opt.show_progress or i == #x then
- if model2 then
- if baseline_output then
- io.stdout:write(
- string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, model2_rmse=%f, baseline_psnr=%f, model1_psnr=%f, model2_psnr=%f \r",
- i, #x,
- math.sqrt(baseline_mse / i),
- math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
- baseline_psnr / i,
- model1_psnr / i, model2_psnr / i
- ))
- else
- io.stdout:write(
- string.format("%d/%d; model1_rmse=%f, model2_rmse=%f, model1_psnr=%f, model2_psnr=%f \r",
- i, #x,
- math.sqrt(model1_mse / i), math.sqrt(model2_mse / i),
- model1_psnr / i, model2_psnr / i
- ))
- end
- else
- if baseline_output then
- io.stdout:write(
- string.format("%d/%d; baseline_rmse=%f, model1_rmse=%f, baseline_psnr=%f, model1_psnr=%f \r",
- i, #x,
- math.sqrt(baseline_mse / i), math.sqrt(model1_mse / i),
- baseline_psnr / i, model1_psnr / i
- ))
- else
- io.stdout:write(
- string.format("%d/%d; model1_rmse=%f, model1_psnr=%f \r",
- i, #x,
- math.sqrt(model1_mse / i), model1_psnr / i
- ))
- end
- end
- io.stdout:flush()
- end
- end
- if opt.save_info then
- local fp = io.open(path.join(opt.output_dir, "benchmark.txt"), "w")
- fp:write("options : " .. cjson.encode(opt) .. "\n")
- if baseline_psnr > 0 then
- fp:write(string.format("baseline: RMSE = %.3f, PSNR = %.3f\n",
- math.sqrt(baseline_mse / #x), baseline_psnr / #x))
- end
- if model1_psnr > 0 then
- fp:write(string.format("model1 : RMSE = %.3f, PSNR = %.3f\n",
- math.sqrt(model1_mse / #x), model1_psnr / #x))
- end
- if model2_psnr > 0 then
- fp:write(string.format("model2 : RMSE = %.3f, PSNR = %.3f\n",
- math.sqrt(model2_mse / #x), model2_psnr / #x))
- end
- fp:close()
- end
- io.stdout:write("\n")
- end
- local function load_data(test_dir)
- local test_x = {}
- local files = dir.getfiles(test_dir, "*.*")
- for i = 1, #files do
- local name = path.basename(files[i])
- local e = path.extension(name)
- local base = name:sub(0, name:len() - e:len())
- local img = image_loader.load_float(files[i])
- if img then
- table.insert(test_x, {image = iproc.crop_mod4(img),
- basename = base})
- end
- if opt.show_progress then
- xlua.progress(i, #files)
- end
- end
- return test_x
- end
- function load_model(filename)
- return torch.load(filename, "ascii")
- end
- if opt.show_progress then
- print(opt)
- end
- if opt.method == "scale" then
- local f1 = path.join(opt.model1_dir, "scale2.0x_model.t7")
- local f2 = path.join(opt.model2_dir, "scale2.0x_model.t7")
- local s1, model1 = pcall(load_model, f1)
- local s2, model2 = pcall(load_model, f2)
- if not s1 then
- error("Load error: " .. f1)
- end
- if not s2 then
- model2 = nil
- end
- local test_x = load_data(opt.dir)
- benchmark(opt, test_x, transform_scale, model1, model2)
- elseif opt.method == "noise" then
- local f1 = path.join(opt.model1_dir, string.format("noise%d_model.t7", opt.noise_level))
- local f2 = path.join(opt.model2_dir, string.format("noise%d_model.t7", opt.noise_level))
- local s1, model1 = pcall(load_model, f1)
- local s2, model2 = pcall(load_model, f2)
- if not s1 then
- error("Load error: " .. f1)
- end
- if not s2 then
- model2 = nil
- end
- local test_x = load_data(opt.dir)
- benchmark(opt, test_x, transform_jpeg, model1, model2)
- end
|