train.lua 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. require 'cutorch'
  2. require 'cunn'
  3. require 'optim'
  4. require 'xlua'
  5. require 'pl'
  6. local settings = require './lib/settings'
  7. local minibatch_adam = require './lib/minibatch_adam'
  8. local iproc = require './lib/iproc'
  9. local create_model = require './lib/srcnn'
  10. local reconstruct = require './lib/reconstruct'
  11. local pairwise_transform = require './lib/pairwise_transform'
  12. local image_loader = require './lib/image_loader'
  13. local function save_test_scale(model, rgb, file)
  14. local up = reconstruct.scale(model, settings.scale, rgb, settings.block_offset)
  15. image.save(file, up)
  16. end
  17. local function save_test_jpeg(model, rgb, file)
  18. local im, count = reconstruct.image(model, rgb, settings.block_offset)
  19. image.save(file, im)
  20. end
  21. local function split_data(x, test_size)
  22. local index = torch.randperm(#x)
  23. local train_size = #x - test_size
  24. local train_x = {}
  25. local valid_x = {}
  26. for i = 1, train_size do
  27. train_x[i] = x[index[i]]
  28. end
  29. for i = 1, test_size do
  30. valid_x[i] = x[index[train_size + i]]
  31. end
  32. return train_x, valid_x
  33. end
  34. local function make_validation_set(x, transformer, n)
  35. n = n or 4
  36. local data = {}
  37. for i = 1, #x do
  38. for k = 1, n do
  39. local x, y = transformer(x[i], true)
  40. table.insert(data, {x = x:reshape(1, x:size(1), x:size(2), x:size(3)),
  41. y = y:reshape(1, y:size(1), y:size(2), y:size(3))})
  42. end
  43. xlua.progress(i, #x)
  44. collectgarbage()
  45. end
  46. return data
  47. end
  48. local function validate(model, criterion, data)
  49. local loss = 0
  50. for i = 1, #data do
  51. local z = model:forward(data[i].x:cuda())
  52. loss = loss + criterion:forward(z, data[i].y:cuda())
  53. xlua.progress(i, #data)
  54. if i % 10 == 0 then
  55. collectgarbage()
  56. end
  57. end
  58. return loss / #data
  59. end
  60. local function train()
  61. local model, offset = create_model()
  62. assert(offset == settings.block_offset)
  63. local criterion = nn.MSECriterion():cuda()
  64. local x = torch.load(settings.images)
  65. local train_x, valid_x = split_data(x,
  66. math.floor(settings.validation_ratio * #x),
  67. settings.validation_crops)
  68. local test = image_loader.load_float(settings.test)
  69. local adam_config = {
  70. learningRate = settings.learning_rate,
  71. xBatchSize = settings.batch_size,
  72. }
  73. local transformer = function(x, is_validation)
  74. if is_validation == nil then is_validation = false end
  75. if settings.method == "scale" then
  76. return pairwise_transform.scale(x,
  77. settings.scale,
  78. settings.crop_size,
  79. offset,
  80. {color_augment = not is_validation,
  81. noise = false,
  82. denoise_model = nil
  83. })
  84. elseif settings.method == "noise" then
  85. return pairwise_transform.jpeg(x, settings.noise_level,
  86. settings.crop_size, offset,
  87. not is_validation)
  88. end
  89. end
  90. local best_score = 100000.0
  91. print("# make validation-set")
  92. local valid_xy = make_validation_set(valid_x, transformer, 20)
  93. valid_x = nil
  94. collectgarbage()
  95. model:cuda()
  96. print("load .. " .. #train_x)
  97. for epoch = 1, settings.epoch do
  98. model:training()
  99. print("# " .. epoch)
  100. print(minibatch_adam(model, criterion, train_x, adam_config,
  101. transformer,
  102. {1, settings.crop_size, settings.crop_size},
  103. {1, settings.crop_size - offset * 2, settings.crop_size - offset * 2}
  104. ))
  105. if epoch % 1 == 0 then
  106. collectgarbage()
  107. model:evaluate()
  108. print("# validation")
  109. local score = validate(model, criterion, valid_xy)
  110. if score < best_score then
  111. best_score = score
  112. print("* update best model")
  113. torch.save(settings.model_file, model)
  114. if settings.method == "noise" then
  115. local log = path.join(settings.model_dir,
  116. ("noise%d_best.png"):format(settings.noise_level))
  117. save_test_jpeg(model, test, log)
  118. elseif settings.method == "scale" then
  119. local log = path.join(settings.model_dir,
  120. ("scale%.1f_best.png"):format(settings.scale))
  121. save_test_scale(model, test, log)
  122. end
  123. end
  124. print("current: " .. score .. ", best: " .. best_score)
  125. end
  126. end
  127. end
  128. torch.manualSeed(settings.seed)
  129. cutorch.manualSeed(settings.seed)
  130. print(settings)
  131. train()