srcnn.lua 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. require 'w2nn'
  2. -- ref: http://arxiv.org/abs/1502.01852
  3. -- ref: http://arxiv.org/abs/1501.00092
  4. local srcnn = {}
  5. function nn.SpatialConvolutionMM:reset(stdv)
  6. local fin = self.kW * self.kH * self.nInputPlane
  7. local fout = self.kW * self.kH * self.nOutputPlane
  8. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  9. self.weight:normal(0, stdv)
  10. self.bias:zero()
  11. end
  12. function nn.SpatialFullConvolution:reset(stdv)
  13. local fin = self.kW * self.kH * self.nInputPlane
  14. local fout = self.kW * self.kH * self.nOutputPlane
  15. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  16. self.weight:normal(0, stdv)
  17. self.bias:zero()
  18. end
  19. if cudnn and cudnn.SpatialConvolution then
  20. function cudnn.SpatialConvolution:reset(stdv)
  21. local fin = self.kW * self.kH * self.nInputPlane
  22. local fout = self.kW * self.kH * self.nOutputPlane
  23. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  24. self.weight:normal(0, stdv)
  25. self.bias:zero()
  26. end
  27. function cudnn.SpatialFullConvolution:reset(stdv)
  28. local fin = self.kW * self.kH * self.nInputPlane
  29. local fout = self.kW * self.kH * self.nOutputPlane
  30. stdv = math.sqrt(4 / ((1.0 + 0.1 * 0.1) * (fin + fout)))
  31. self.weight:normal(0, stdv)
  32. self.bias:zero()
  33. end
  34. end
  35. function nn.SpatialConvolutionMM:clearState()
  36. if self.gradWeight then
  37. self.gradWeight:resize(self.nOutputPlane, self.nInputPlane * self.kH * self.kW):zero()
  38. end
  39. if self.gradBias then
  40. self.gradBias:resize(self.nOutputPlane):zero()
  41. end
  42. return nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput', 'output', 'gradInput')
  43. end
  44. function srcnn.channels(model)
  45. if model.w2nn_channels ~= nil then
  46. return model.w2nn_channels
  47. else
  48. return model:get(model:size() - 1).weight:size(1)
  49. end
  50. end
  51. function srcnn.backend(model)
  52. local conv = model:findModules("cudnn.SpatialConvolution")
  53. local fullconv = model:findModules("cudnn.SpatialFullConvolution")
  54. if #conv > 0 or #fullconv > 0 then
  55. return "cudnn"
  56. else
  57. return "cunn"
  58. end
  59. end
  60. function srcnn.color(model)
  61. local ch = srcnn.channels(model)
  62. if ch == 3 then
  63. return "rgb"
  64. else
  65. return "y"
  66. end
  67. end
  68. function srcnn.name(model)
  69. if model.w2nn_arch_name ~= nil then
  70. return model.w2nn_arch_name
  71. else
  72. local conv = model:findModules("nn.SpatialConvolutionMM")
  73. if #conv == 0 then
  74. conv = model:findModules("cudnn.SpatialConvolution")
  75. end
  76. if #conv == 7 then
  77. return "vgg_7"
  78. elseif #conv == 12 then
  79. return "vgg_12"
  80. else
  81. error("unsupported model")
  82. end
  83. end
  84. end
  85. function srcnn.offset_size(model)
  86. if model.w2nn_offset ~= nil then
  87. return model.w2nn_offset
  88. else
  89. local name = srcnn.name(model)
  90. if name:match("vgg_") then
  91. local conv = model:findModules("nn.SpatialConvolutionMM")
  92. if #conv == 0 then
  93. conv = model:findModules("cudnn.SpatialConvolution")
  94. end
  95. local offset = 0
  96. for i = 1, #conv do
  97. offset = offset + (conv[i].kW - 1) / 2
  98. end
  99. return math.floor(offset)
  100. else
  101. error("unsupported model")
  102. end
  103. end
  104. end
  105. function srcnn.scale_factor(model)
  106. if model.w2nn_scale_factor ~= nil then
  107. return model.w2nn_scale_factor
  108. else
  109. local name = srcnn.name(model)
  110. if name == "upconv_7" then
  111. return 2
  112. elseif name == "upconv_8_4x" then
  113. return 4
  114. else
  115. return 1
  116. end
  117. end
  118. end
  119. local function SpatialConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  120. if backend == "cunn" then
  121. return nn.SpatialConvolutionMM(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  122. elseif backend == "cudnn" then
  123. return cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  124. else
  125. error("unsupported backend:" .. backend)
  126. end
  127. end
  128. local function SpatialFullConvolution(backend, nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  129. if backend == "cunn" then
  130. return nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH, adjW, adjH)
  131. elseif backend == "cudnn" then
  132. return cudnn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
  133. else
  134. error("unsupported backend:" .. backend)
  135. end
  136. end
  137. local function ReLU(backend)
  138. if backend == "cunn" then
  139. return nn.ReLU(true)
  140. elseif backend == "cudnn" then
  141. return cudnn.ReLU(true)
  142. else
  143. error("unsupported backend:" .. backend)
  144. end
  145. end
  146. local function SpatialMaxPooling(backend, kW, kH, dW, dH, padW, padH)
  147. if backend == "cunn" then
  148. return nn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
  149. elseif backend == "cudnn" then
  150. return cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
  151. else
  152. error("unsupported backend:" .. backend)
  153. end
  154. end
  155. -- VGG style net(7 layers)
  156. function srcnn.vgg_7(backend, ch)
  157. local model = nn.Sequential()
  158. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  159. model:add(nn.LeakyReLU(0.1, true))
  160. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  161. model:add(nn.LeakyReLU(0.1, true))
  162. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  163. model:add(nn.LeakyReLU(0.1, true))
  164. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  165. model:add(nn.LeakyReLU(0.1, true))
  166. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  167. model:add(nn.LeakyReLU(0.1, true))
  168. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  169. model:add(nn.LeakyReLU(0.1, true))
  170. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  171. model:add(w2nn.InplaceClip01())
  172. model:add(nn.View(-1):setNumInputDims(3))
  173. model.w2nn_arch_name = "vgg_7"
  174. model.w2nn_offset = 7
  175. model.w2nn_scale_factor = 1
  176. model.w2nn_channels = ch
  177. --model:cuda()
  178. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  179. return model
  180. end
  181. -- VGG style net(12 layers)
  182. function srcnn.vgg_12(backend, ch)
  183. local model = nn.Sequential()
  184. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  185. model:add(nn.LeakyReLU(0.1, true))
  186. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  187. model:add(nn.LeakyReLU(0.1, true))
  188. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  189. model:add(nn.LeakyReLU(0.1, true))
  190. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  191. model:add(nn.LeakyReLU(0.1, true))
  192. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  193. model:add(nn.LeakyReLU(0.1, true))
  194. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  195. model:add(nn.LeakyReLU(0.1, true))
  196. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  197. model:add(nn.LeakyReLU(0.1, true))
  198. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  199. model:add(nn.LeakyReLU(0.1, true))
  200. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  201. model:add(nn.LeakyReLU(0.1, true))
  202. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  203. model:add(nn.LeakyReLU(0.1, true))
  204. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  205. model:add(nn.LeakyReLU(0.1, true))
  206. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  207. model:add(w2nn.InplaceClip01())
  208. model:add(nn.View(-1):setNumInputDims(3))
  209. model.w2nn_arch_name = "vgg_12"
  210. model.w2nn_offset = 12
  211. model.w2nn_scale_factor = 1
  212. model.w2nn_resize = false
  213. model.w2nn_channels = ch
  214. --model:cuda()
  215. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  216. return model
  217. end
  218. -- Dilated Convolution (7 layers)
  219. function srcnn.dilated_7(backend, ch)
  220. local model = nn.Sequential()
  221. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  222. model:add(nn.LeakyReLU(0.1, true))
  223. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  224. model:add(nn.LeakyReLU(0.1, true))
  225. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  226. model:add(nn.LeakyReLU(0.1, true))
  227. model:add(nn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  228. model:add(nn.LeakyReLU(0.1, true))
  229. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 4, 4))
  230. model:add(nn.LeakyReLU(0.1, true))
  231. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  232. model:add(nn.LeakyReLU(0.1, true))
  233. model:add(SpatialConvolution(backend, 128, ch, 3, 3, 1, 1, 0, 0))
  234. model:add(w2nn.InplaceClip01())
  235. model:add(nn.View(-1):setNumInputDims(3))
  236. model.w2nn_arch_name = "dilated_7"
  237. model.w2nn_offset = 12
  238. model.w2nn_scale_factor = 1
  239. model.w2nn_resize = false
  240. model.w2nn_channels = ch
  241. --model:cuda()
  242. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  243. return model
  244. end
  245. -- Upconvolution
  246. function srcnn.upconv_7(backend, ch)
  247. local model = nn.Sequential()
  248. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  249. model:add(nn.LeakyReLU(0.1, true))
  250. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  251. model:add(nn.LeakyReLU(0.1, true))
  252. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  253. model:add(nn.LeakyReLU(0.1, true))
  254. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  255. model:add(nn.LeakyReLU(0.1, true))
  256. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  257. model:add(nn.LeakyReLU(0.1, true))
  258. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  259. model:add(nn.LeakyReLU(0.1, true))
  260. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  261. model:add(w2nn.InplaceClip01())
  262. model:add(nn.View(-1):setNumInputDims(3))
  263. model.w2nn_arch_name = "upconv_7"
  264. model.w2nn_offset = 14
  265. model.w2nn_scale_factor = 2
  266. model.w2nn_resize = true
  267. model.w2nn_channels = ch
  268. return model
  269. end
  270. -- large version of upconv_7
  271. -- This model able to beat upconv_7 (PSNR: +0.3 ~ +0.8) but this model is 2x slower than upconv_7.
  272. function srcnn.upconv_7l(backend, ch)
  273. local model = nn.Sequential()
  274. model:add(SpatialConvolution(backend, ch, 32, 3, 3, 1, 1, 0, 0))
  275. model:add(nn.LeakyReLU(0.1, true))
  276. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  277. model:add(nn.LeakyReLU(0.1, true))
  278. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  279. model:add(nn.LeakyReLU(0.1, true))
  280. model:add(SpatialConvolution(backend, 128, 192, 3, 3, 1, 1, 0, 0))
  281. model:add(nn.LeakyReLU(0.1, true))
  282. model:add(SpatialConvolution(backend, 192, 256, 3, 3, 1, 1, 0, 0))
  283. model:add(nn.LeakyReLU(0.1, true))
  284. model:add(SpatialConvolution(backend, 256, 512, 3, 3, 1, 1, 0, 0))
  285. model:add(nn.LeakyReLU(0.1, true))
  286. model:add(SpatialFullConvolution(backend, 512, ch, 4, 4, 2, 2, 3, 3):noBias())
  287. model:add(w2nn.InplaceClip01())
  288. model:add(nn.View(-1):setNumInputDims(3))
  289. model.w2nn_arch_name = "upconv_7l"
  290. model.w2nn_offset = 14
  291. model.w2nn_scale_factor = 2
  292. model.w2nn_resize = true
  293. model.w2nn_channels = ch
  294. --model:cuda()
  295. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  296. return model
  297. end
  298. -- layerwise linear blending with skip connections
  299. -- Note: PSNR: upconv_7 < skiplb_7 < upconv_7l
  300. function srcnn.skiplb_7(backend, ch)
  301. local function skip(backend, i, o)
  302. local con = nn.Concat(2)
  303. local conv = nn.Sequential()
  304. conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
  305. conv:add(nn.LeakyReLU(0.1, true))
  306. -- depth concat
  307. con:add(conv)
  308. con:add(nn.Identity()) -- skip
  309. return con
  310. end
  311. local model = nn.Sequential()
  312. model:add(skip(backend, ch, 16))
  313. model:add(skip(backend, 16+ch, 32))
  314. model:add(skip(backend, 32+16+ch, 64))
  315. model:add(skip(backend, 64+32+16+ch, 128))
  316. model:add(skip(backend, 128+64+32+16+ch, 128))
  317. model:add(skip(backend, 128+128+64+32+16+ch, 256))
  318. -- input of last layer = [all layerwise output(contains input layer)].flatten
  319. model:add(SpatialFullConvolution(backend, 256+128+128+64+32+16+ch, ch, 4, 4, 2, 2, 3, 3):noBias()) -- linear blend
  320. model:add(w2nn.InplaceClip01())
  321. model:add(nn.View(-1):setNumInputDims(3))
  322. model.w2nn_arch_name = "skiplb_7"
  323. model.w2nn_offset = 14
  324. model.w2nn_scale_factor = 2
  325. model.w2nn_resize = true
  326. model.w2nn_channels = ch
  327. --model:cuda()
  328. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  329. return model
  330. end
  331. -- dilated convolution + deconvolution
  332. -- Note: This model is not better than upconv_7. Maybe becuase of under-fitting.
  333. function srcnn.dilated_upconv_7(backend, ch)
  334. local model = nn.Sequential()
  335. model:add(SpatialConvolution(backend, ch, 16, 3, 3, 1, 1, 0, 0))
  336. model:add(nn.LeakyReLU(0.1, true))
  337. model:add(SpatialConvolution(backend, 16, 32, 3, 3, 1, 1, 0, 0))
  338. model:add(nn.LeakyReLU(0.1, true))
  339. model:add(nn.SpatialDilatedConvolution(32, 64, 3, 3, 1, 1, 0, 0, 2, 2))
  340. model:add(nn.LeakyReLU(0.1, true))
  341. model:add(nn.SpatialDilatedConvolution(64, 128, 3, 3, 1, 1, 0, 0, 2, 2))
  342. model:add(nn.LeakyReLU(0.1, true))
  343. model:add(nn.SpatialDilatedConvolution(128, 128, 3, 3, 1, 1, 0, 0, 2, 2))
  344. model:add(nn.LeakyReLU(0.1, true))
  345. model:add(SpatialConvolution(backend, 128, 256, 3, 3, 1, 1, 0, 0))
  346. model:add(nn.LeakyReLU(0.1, true))
  347. model:add(SpatialFullConvolution(backend, 256, ch, 4, 4, 2, 2, 3, 3):noBias())
  348. model:add(w2nn.InplaceClip01())
  349. model:add(nn.View(-1):setNumInputDims(3))
  350. model.w2nn_arch_name = "dilated_upconv_7"
  351. model.w2nn_offset = 20
  352. model.w2nn_scale_factor = 2
  353. model.w2nn_resize = true
  354. model.w2nn_channels = ch
  355. --model:cuda()
  356. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  357. return model
  358. end
  359. -- ref: https://arxiv.org/abs/1609.04802
  360. -- note: no batch-norm, no zero-paading
  361. function srcnn.srresnet_2x(backend, ch)
  362. local function skip(backend, i, o)
  363. local con = nn.Concat(2)
  364. local conv = nn.Sequential()
  365. conv:add(SpatialConvolution(backend, i, o, 3, 3, 1, 1, 1, 1))
  366. conv:add(ReLU(backend))
  367. -- depth concat
  368. con:add(conv)
  369. con:add(nn.Identity()) -- skip
  370. return con
  371. end
  372. local function resblock(backend)
  373. local seq = nn.Sequential()
  374. local con = nn.ConcatTable()
  375. local conv = nn.Sequential()
  376. conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  377. conv:add(ReLU(backend))
  378. conv:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  379. con:add(conv)
  380. con:add(nn.SpatialZeroPadding(-2, -2, -2, -2)) -- identity + de-padding
  381. seq:add(con)
  382. seq:add(nn.CAddTable())
  383. return seq
  384. end
  385. local model = nn.Sequential()
  386. --model:add(skip(backend, ch, 64 - ch))
  387. model:add(SpatialConvolution(backend, ch, 64, 3, 3, 1, 1, 0, 0))
  388. model:add(nn.LeakyReLU(0.1, true))
  389. model:add(resblock(backend))
  390. model:add(resblock(backend))
  391. model:add(resblock(backend))
  392. model:add(resblock(backend))
  393. model:add(resblock(backend))
  394. model:add(resblock(backend))
  395. model:add(SpatialFullConvolution(backend, 64, 64, 4, 4, 2, 2, 2, 2))
  396. model:add(ReLU(backend))
  397. model:add(SpatialConvolution(backend, 64, ch, 3, 3, 1, 1, 0, 0))
  398. model:add(w2nn.InplaceClip01())
  399. --model:add(nn.View(-1):setNumInputDims(3))
  400. model.w2nn_arch_name = "srresnet_2x"
  401. model.w2nn_offset = 28
  402. model.w2nn_scale_factor = 2
  403. model.w2nn_resize = true
  404. model.w2nn_channels = ch
  405. --model:cuda()
  406. --print(model:forward(torch.Tensor(32, ch, 92, 92):uniform():cuda()):size())
  407. return model
  408. end
  409. -- for segmentation
  410. function srcnn.fcn_v1(backend, ch)
  411. -- input_size = 120
  412. local model = nn.Sequential()
  413. --i = 120
  414. --model:cuda()
  415. --print(model:forward(torch.Tensor(32, ch, i, i):uniform():cuda()):size())
  416. model:add(SpatialConvolution(backend, ch, 32, 5, 5, 2, 2, 0, 0))
  417. model:add(nn.LeakyReLU(0.1, true))
  418. model:add(SpatialConvolution(backend, 32, 32, 3, 3, 1, 1, 0, 0))
  419. model:add(nn.LeakyReLU(0.1, true))
  420. model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
  421. model:add(SpatialConvolution(backend, 32, 64, 3, 3, 1, 1, 0, 0))
  422. model:add(nn.LeakyReLU(0.1, true))
  423. model:add(SpatialConvolution(backend, 64, 64, 3, 3, 1, 1, 0, 0))
  424. model:add(nn.LeakyReLU(0.1, true))
  425. model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
  426. model:add(SpatialConvolution(backend, 64, 128, 3, 3, 1, 1, 0, 0))
  427. model:add(nn.LeakyReLU(0.1, true))
  428. model:add(SpatialConvolution(backend, 128, 128, 3, 3, 1, 1, 0, 0))
  429. model:add(nn.LeakyReLU(0.1, true))
  430. model:add(SpatialMaxPooling(backend, 2, 2, 2, 2))
  431. model:add(SpatialConvolution(backend, 128, 256, 1, 1, 1, 1, 0, 0))
  432. model:add(nn.LeakyReLU(0.1, true))
  433. model:add(nn.Dropout(0.5, false, true))
  434. model:add(SpatialFullConvolution(backend, 256, 128, 2, 2, 2, 2, 0, 0))
  435. model:add(nn.LeakyReLU(0.1, true))
  436. model:add(SpatialFullConvolution(backend, 128, 128, 2, 2, 2, 2, 0, 0))
  437. model:add(nn.LeakyReLU(0.1, true))
  438. model:add(SpatialConvolution(backend, 128, 64, 3, 3, 1, 1, 0, 0))
  439. model:add(nn.LeakyReLU(0.1, true))
  440. model:add(SpatialFullConvolution(backend, 64, 64, 2, 2, 2, 2, 0, 0))
  441. model:add(nn.LeakyReLU(0.1, true))
  442. model:add(SpatialConvolution(backend, 64, 32, 3, 3, 1, 1, 0, 0))
  443. model:add(nn.LeakyReLU(0.1, true))
  444. model:add(SpatialFullConvolution(backend, 32, ch, 4, 4, 2, 2, 3, 3))
  445. model:add(w2nn.InplaceClip01())
  446. model:add(nn.View(-1):setNumInputDims(3))
  447. model.w2nn_arch_name = "fcn_v1"
  448. model.w2nn_offset = 36
  449. model.w2nn_scale_factor = 1
  450. model.w2nn_channels = ch
  451. model.w2nn_input_size = 120
  452. return model
  453. end
  454. function srcnn.create(model_name, backend, color)
  455. model_name = model_name or "vgg_7"
  456. backend = backend or "cunn"
  457. color = color or "rgb"
  458. local ch = 3
  459. if color == "rgb" then
  460. ch = 3
  461. elseif color == "y" then
  462. ch = 1
  463. else
  464. error("unsupported color: " .. color)
  465. end
  466. if srcnn[model_name] then
  467. local model = srcnn[model_name](backend, ch)
  468. assert(model.w2nn_offset % model.w2nn_scale_factor == 0)
  469. return model
  470. else
  471. error("unsupported model_name: " .. model_name)
  472. end
  473. end
  474. --[[
  475. local model = srcnn.fcn_v1("cunn", 3):cuda()
  476. print(model:forward(torch.Tensor(1, 3, 108, 108):zero():cuda()):size())
  477. print(model)
  478. --]]
  479. return srcnn