| 123456789101112131415161718192021222324252627282930313233343536373839 | -- ref: https://en.wikipedia.org/wiki/Huber_losslocal ClippedWeightedHuberCriterion, parent = torch.class('w2nn.ClippedWeightedHuberCriterion','nn.Criterion')function ClippedWeightedHuberCriterion:__init(w, gamma, clip)   parent.__init(self)   self.clip = clip   self.gamma = gamma or 1.0   self.weight = w:clone()   self.diff = torch.Tensor()   self.diff_abs = torch.Tensor()   --self.outlier_rate = 0.0   self.square_loss_buff = torch.Tensor()   self.linear_loss_buff = torch.Tensor()endfunction ClippedWeightedHuberCriterion:updateOutput(input, target)   self.diff:resizeAs(input):copy(input)   self.diff[torch.lt(self.diff, self.clip[1])] = self.clip[1]   self.diff[torch.gt(self.diff, self.clip[2])] = self.clip[2]   for i = 1, input:size(1) do      self.diff[i]:add(-1, target[i]):cmul(self.weight)   end   self.diff_abs:resizeAs(self.diff):copy(self.diff):abs()      local square_targets = self.diff[torch.lt(self.diff_abs, self.gamma)]   local linear_targets = self.diff[torch.ge(self.diff_abs, self.gamma)]   local square_loss = self.square_loss_buff:resizeAs(square_targets):copy(square_targets):pow(2.0):mul(0.5):sum()   local linear_loss = self.linear_loss_buff:resizeAs(linear_targets):copy(linear_targets):abs():add(-0.5 * self.gamma):mul(self.gamma):sum()   --self.outlier_rate = linear_targets:nElement() / input:nElement()   self.output = (square_loss + linear_loss) / input:nElement()   return self.outputendfunction ClippedWeightedHuberCriterion:updateGradInput(input, target)   local norm = 1.0 / input:nElement()   self.gradInput:resizeAs(self.diff):copy(self.diff):mul(norm)   local outlier = torch.ge(self.diff_abs, self.gamma)   self.gradInput[outlier] = torch.sign(self.diff[outlier]) * self.gamma * norm   return self.gradInput end
 |